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Abstract—Multiple Instance Learning (MIL) has garnered
widespread attention in the field of Whole Slide Image (WSI)
classification as it replaces pixel-level manual annotation
with diagnostic reports as labels, significantly reducing labor
costs. Recent research has shown that bag-level MIL
methods often yield better results because they can consider
all patches of the WSI as a whole. However, a drawback of
such methods is the incorporation of more redundant
patches, leading to interference. To extract patches with high
diagnostic value while excluding interfering patches to
address this issue, we developed an attention-based feature
distillation multi-instance learning (AFD-MIL) approach. This
approach utilizes attention mechanisms to distill more
valuable features and applies them to WSI classification.
Additionally, we introduced global loss optimization to finely
control the feature distillation module. AFD-MIL is
orthogonal to many existing MIL methods, leading to
consistent performance improvements. This approach has
surpassed the current state-of-the-art (SOTA) method,
achieving 91.47% ACC and 94.29% AUC on the Camelyon16
(breast cancer), while 93.33% ACC and 98.17% AUC on the
TCGA-NSCLC (non-small cell lung cancer). Different feature
distillation methods were used for the two datasets, tailored
to the specific diseases, thereby improving performance and
interpretability.

Index Terms— Pathology, Whole Slide Image, Multi-
instance Learning, Feature Distillation, Attention-based,
Deep Learning.

|. INTRODUCTION

athological diagnosis serves as crucial preoperative
support for tumor treatment, traditionally conducted by

pathologists using microscopes [1]. As digital slide
scanning technology has become increasingly reliable,
pathological slides are saved as whole slide images (WSIs)
and stored and viewed on computers for clinical and research
purposes [2]. Subsequently, deep learning has also been
applied in assisting pathological image diagnosis [3-5]. Given
the large size of WSI images and the inherently high risks
associated with medical tasks, computational pathology [1]
poses a significant challenge in the field of computer vision.

This paper was submitted for review on November 12, 2023. This
work was supported in part by the China Key Research and
Development Program (Grant No. 2023YFC2508200), the Fundamental
Research Funds for the Central Universities (Grant No. N2219001), and
the Liaoning Province Medical Engineering Cross Joint Fund (Grant No.
2022-YGJC-76).

In this domain, deep learning techniques are employed for
tasks such as WSI classification [1, 6-8] and segmentation [9-
11], contributing [12-21] to precise disease diagnosis,
prognosis and treatment. Existing models in the field of
computer vision are predominantly designed for smaller
images (typically, 256x256 pixels or the comparable
magnitude). When dealing with WSIs, which often have
gigapixel dimensions, the common practice is to divide them
into multiple patches. However, in tasks such as tumor
diagnosis, labeling patches at the patch level or annotating
tumor regions at the pixel level involves prohibitively high
manual labor costs [22].

This challenge has prompted researchers to explore weakly
supervised solutions for addressing issues in the WSI
classification field. MIL has achieved significant success
[1][6] because it can be trained using only the reported
diagnostic results as labels and can provide prediction
probabilities for each region within the WSI, thus proving to
be successful in assisting diagnoses. However, several
challenges still remain [23-26]. For instance, due to the large
number of patches present in WSIs, the training process can
introduce a significant amount of redundant features, which
may interfere with the model’s learning process. In addition,
the inference criterion of instance-level MIL is that when any
patch within a WSI is diagnosed as malignant, the entire WSI
is classified as malignant. While this rule may seem
reasonable, in real-world scenarios, one false positive patch
can lead to the misclassification of a WSI as malignant,
significantly reducing precision.

In recent years, there has been a growing focus among
researchers on bag-level MIL methods [8, 27, 28]. These
approaches extract features from all patches within a WSI and
further fuse them into a single bag-level feature to predict the
class of the WSI. These methods have proven more effective
in pathology image classification tasks. However, most
research in this direction has focused on improving the feature
fusion module to obtain better bag-level features. For example,
from feature score-weighted fusion to the development of
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fusion based on self-attention, bag-level features have been

better represented, leading to continuous improvement in

model performance. However, an important issue has been
overlooked: the number of high-diagnostic-value patches

(such as substantive tumors) in WSIs is significantly lower

than the number of interfering patches (such as non-cellular

tissue and benign cells). Merely improving the feature fusion
module is insufficient to eliminate the negative impact of
redundant original inputs on model performance.

To distill high-diagnostic-value subregions within WSIs
and exclude most interference before feature fusion, we
designed an attention-based feature distillation multi-instance
learning (AFD-MIL) approach, as shown in Figure 1. The first
step involves constructing dual-channel feature distillation
modules based on attention mechanisms and MIL classifiers.
These modules are designed to distill the features from all
original patches, eliminate redundant feature interference, and
emphasize more valuable features. In the second step, the
distilled features are further transformed into WSI-level
features through feature fusion. These features are then used
for classification tasks. Finally, a global loss optimization is
introduced when designing the loss function, directly
adjusting the loss optimization of the feature distillation
module based on the quality of the final classification results.
Most existing MIL methods are orthogonal to AFD-MIL,
allowing seamless integration into existing solutions, thus
enhancing performance and contributing to further research in
the field. In the first section of results, AFD-MIL was
compared with the latest baselines on the Camelyonl6 [29]
and TCGA-NSCLC [30] datasets, and consistently achieved
SOTA performance. Secondly, the impacts of various model
components on overall performance were investigated,
including feature distillation scale, ablation experiments, and
different distillation methods. Different distillation methods
were identified to adapt to different tasks (including benign-
malignant classification and tumor subtypes classification).
Finally, we visualized the regions of interest in AFD-MIL,
demonstrating its potential for tumor detection. The code is
available at https://github.com/MasyerN/AFD-MIL. In
summary, the main contributions of this study are as follows:
(1) The integration of attention-based feature distillation with

MIL for WSI classification, for the first time, addresses
the challenge of excessive redundant features and
achieves optimal performance in cancer classification
tasks (Camelyon16 and NSCLC).

(2) AFD-MIL achieves high interpretability as it
automatically selects regions similar to ground truth.
Additionally, its compatibility with various existing
models enhances performance, demonstrating high
scalability.

Il. RELATED WORK

A. Instance- level Multi-Instance Learning

Instance-level MIL [6, 7, 23-26, 31] methods are trained by
optimizing the features of individual patches. During the
training phase of these methods, a filter is applied to select the

“top k” patches with the highest malignant probability.
Subsequently, the training process involves backpropagation
with WSI-level labels assigned to the selected patches. This
process enables the encoder and fully connected layers
responsible for patch classification to learn to differentiate
between benign and malignant tissues. During inference, the
model classifies each patch to determine its category, and when
any patch within a WSI is identified as “malignant”, the entire
WSI is classified as malignant. However, such approaches tend
to yield logical errors when faced with multi-diseases
classification tasks such as the NSCLC dataset [30]. Because in
this dataset, positive and negative samples represent two
subtypes of cancer, rather than “malignant” and “benign”.
Multiple studies have demonstrated that instance-level MIL
performs less effectively than do bag-level MIL methods
[8][27].

B. Bag-level Multi-Instance Learning

Bag-level MIL methods typically employ feature fusion
techniques to combine the features of all instances into global
features at the WSI level [8, 27, 28, 31-35]. Common
approaches involve utilizing feature weighting [8] or self-
attention mechanisms [32]. To reduce the interference of
redundant features during feature fusion, researchers have
developed two-step multi-instance learning approaches [33]. In
this approach, prior to feature fusion, probabilities indicating
the presence of tumors in each patch are obtained through
instance-based multi-instance learning. These probabilities are
then used to select the desired features for further fusion.
However, such methods do not fully address the inherent issues
of instance-level MIL methods (the first step), including their
suboptimal performance during feature selection and limited
interpretability. Additionally, the subsequent network training
is decoupled, making it challenging to fine-tune the network
based on the final classification results. In this study, the
problems associated with two-step multi-instance learning are
discussed and optimized, leading to further improvements in
model performance.

I1l. MeTHOD

The model used in this study is presented in Figure 1 and
Algorithm 1. First, a WSI is segmented into several patches,
each sized appropriately for neural network processing (the size
of each patch is 256x256 pixels, and a WSI at the magnification
of 20x% is usually divided into over 10,000 patches). Then, these
patches are encoded into features using a pretrained image
encoder. The dual-channel feature distillation model refines
these features for feature fusion, ultimately making predictions.
The detailed structure of the model is depicted in Figure 2,
which shows two distinct feature distillation models and the
subsequent classification model.

This section is divided into two subsections for discussion.
Subsection A introduces the dual-channel feature distillation
model, which corresponds to Algorithms 2 and 3. Subsection B
presents information on feature fusion, WSI-level
classification, and global loss optimization, which constitute the
latter part of Algorithm 1.



Page 3 of 14

oONOUVT D WN =

- Attention-Based Feature Distillation

J Original K Features of Patches h

- Instance-Level MIL-Based Feature Distillation

k Features Distilled by Attention

| Top-k
[ | o
o ! o
L ' 3
>
] | o
| Attention Scores ..m"'."
0
o — %
| %
| Top-k c
(- ‘ =
| 1 9
e | | 3
= [ =
Probabilities of

Positivity

4 E Feature Fusion and WSI-Level Classification

La] k Features Distilled by Classification

Fig. 1. The AFD-MIL model utilizes a feature distillation module to extract effective patch-level features. The features are fused and a classification
network is utilized to obtain the WSI-level classification results. The network requires only WSI-level labels. Detailed annotations for each patch are

not required.

Algorithm 1: Attention-Based Feature Distillation MIL

Input: Instance features X = {x, x,, ..., xx} of WSI W, the
label Y of W, distilled feature number k
Output: Classification result Yy,..q of W
1 Initialize model parameters
2 {h{, Ay, ..., by}, Ly < Algorithm 2(X, Y, k)
3 {01,0, ..., 0}, L, < Algorithm 3(X, Y, k)
4 {feature,, feature,, ..., feature,;}
«—{hy, hy, ..., Ry, 04,0, ..., 0.}

{og, g, o, Ok}
-

9]

softmax (MLP,({feature,, feature,, ..., feature,

6  feature, <0 € R™!

7 for1 < i < 2kdo

8 featurey, «—featurey, + a; * feature;

9 i—i+1

10 end for

11 Y}inal «—MLP,(featurey,)

12 Yjreq «—argmax (?final)

13 L3 «—crossentropyloss (17final, Y)

14 L «(loss; + loss,) * exp(—||losss||,) + loss,
Update parameters of all models (Algorithm 2,
Algorithm 3, MLP,, MLP,)

16 returnY,, .4

A. Feature Distillation

1. Instance-Level MIL-Based Feature Distillation

For a given WSI W, patches can be obtained through tissue
region segmentation and instance-level segmentation. Similar
to previous MIL-based studies [6, 7, 27, 28], a pretrained image
encoder is utilized to extract features from these patches. This
model is not involved in the training process. The model
designed in this study focuses solely on learning from the
extracted features. As shown in Fig. 2.a and Algorithm 2, the

patches yield instance features X = {x4, x5, ..., X}, where K
represents the total number of patches contained in W. Each
individual patch x; has a latent label y; (where y; = 1 denotes
positive, and y; = 0 denotes negative). These labels exist in
reality but are unknown to the model. The labels Y for WSI W
are known to the model and are represented as:

K
1,if Zyi >0
Yy = i=1

- K
0,if > yi=0
i=1

When at least one patch in WSI W is classified as positive,
the WSI is categorized as positive; otherwise, the WSI is
classified as negative. The multi-instance network f,;
typically consists of fully connected layers designed for the
patch classification task: §; = f;,,;;(x;), where §; represents the
probability of x; being predicted as positive. Once predictions
for all patches in W are made, the labels Y are used to calculate
the loss by considering the top-k highest predicted probabilities
from {y;,7,,...,9x}. The gradient is then backpropagated
accordingly, enabling the weakly supervised learning of f;,;;:

hy, by, ... Ay = argmax($y, Py, . Vi, k) 2
k

loss; = —%2 Y xlog(h)) + (1 =Y)*log(1—h) (3)

i=0

€y

The top-k features selected by f,,;;, denoted as {hy, hy, ...
are utilized for subsequent feature fusion.

During this feature distillation process, patches with higher
positive probabilities are selected. This approach is more
effective for the tumor versus normal tissue classification task
with the Camelyon16 dataset. However, this approach is not as
effective for the NSCLC dataset. The reason for this difference
lies in the nature of the NSCLC dataset, where both positive and
negative samples represent various types of tumors, and there
are no regions in WSIs that can be considered “normal tissue”.
The patches in these areas fall into a “third category” of images

’ hk}5
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Fig. 2. The detailed structure of the feature distillation modules and th;e classification module. a. Instance-level MIL-based feature distillation; b.
Attention-based feature distillation; and c. Feature fusion and WSI-level classification.

Algorithm 2: Instance-Level MIL-Based Feature
Distillation

Input: instance features X = {xq, x5, ..., xx } of WSI W,
the label Y of W, distilled feature number k
Output: distilled features {h4, h,, ..., hy}, loss function L;
1,92, Ik} <0
for1<i < Kdo
9i — MLP;(x;)
i—i+1
end for
{hy, by, ..y} — argmax (3, 9z, - Pi), k)
Ly <0
for h € {hy,hy, .. hx}, 1< i < kdo
h; Xargindex(h)
Ly < Ly + crossentropyloss(hy,Y)
i—i+1
end for
return {hy, hy, ..., h}, Lq

O 0 N N L AW~

—_—
W NN = O

that are neither negative nor positive. Defining such images as
negative samples would be incorrect. Therefore, we compare
another feature distillation approach, i.e, an approach where the
top k/2 features with the highest positive probabilities and the
top k/2 features with the highest negative probabilities are
selected. These features are collectively used for subsequent
feature fusion and WSI classification tasks. These two feature
distillation methods are referred to as Max-Positive and Max-
Positive& Negative, respectively.
2. Attention-Based Feature Distillation

As shown in Fig. 2.b and Algorithm 3, the role of the
attention network f,.., is to obtain attention scores q;
corresponding to the instance x;. Then, by weighting the
instance features, the WSI-level global feature X, is
generated. Subsequently, a fully connected layer is used to
predict the labels for the WSI:

{ai}f € Rt = fa]t(ten({xi}i( € RKXn) (4)
KXwsi = Z ai * Xi (5)
? = fml:p (sti) (6)
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Algorithm 3: Attention-Based Feature Distillation TABLE
DETAILS OF THE DATASETS

Input: Instance. fe.atures X ={xq,x5, ..., xg} of WSI W, the Training Testing
label Y of W, distilled feature number k Item : — - —

L. . Negative Positive Negative Positive
Output: Distilled features {04, 0,, ..., 04}, loss function L, :

WSIs in
1 {ag,dy, ..., 0x} <softmax (MLP,(X)) Camelyon16 154 111 80 49
2 featureyey, <0 € R Patches in
3 forl<i < Kdo Camelyon16 1437600 1036187 737829 451919
4 featuregye, «—featuregen + a; * X; WSIs in
5 Pf—i+1 TCGA- 427 409 107 103
6  end for PNtSEL(?
> atches in

7 Y —MLbs(featureaien) TCGA- 1683444 1524380 440289 423794
8 L, «crossentropyloss(7,Y) NSCLC
9  {03,0,,..0;} —argmax((ay, @y, ..., k), k)
10 foro € {6,,0,,..0,},1< i < kdo feature distillation step in the current batch, while unfavorable
11 0; “Xargindex(o) predictions will be penalized.
12 i—i+1
13 end for IV. RESULTS
14 return {0,,0,,...,0;}, L, A. Datasets and Data Preprocessing

The results obtained by f,;¢en during the feature distillation
phase are trained using cross-entropy loss, but WSI-level
predictions are not obtained during the inference stage. These
results are solely used for feature distillation. f, ., selects the
top-k features with the highest attention scores, denoted as
{oy,0,, ..., 0}, for subsequent feature fusion:

loss, =Y xlog(Y)+ 1 =Y) xlog(1-7) (7)
04,0y, ...0;, = argmax(aq, ay, ... A, k) 3)

B. Feature Fusion, WSI-Level Classification and Global
Loss

A total of 2k distilled features from W are obtained through
fmii and fyeien. The feature fusion process is diverse and can be
replaced with existing MIL solutions in this study, as shown in
Figure 2.c. The fused features are then used for the
classification of WSIs according to the following formulas:

Y}inal = fmlp [ffusion(hl’ hy, ..oy, 01,0, ... ok)] 9
loss; =Y * log(?ﬁnal) +(1-Y)= log(l — ?final) (10)

The traditional two-step MIL feature distillation optimization
results are not related to the final WSI classification results and
cannot validate the impact of feature distillation parameters on
the ultimate classification results. To address this issue, we
introduce global loss function optimization. In the final loss
function, we utilize the WSI predictions to optimize the loss
function for the feature distillation section:

loss = (loss, + loss,) * exp(—||losss||{) + lossy (11)

This loss function can be optimized for feature distillation
based on the value of loss;, which represents the model’s final
prediction. Adjusting the gradient backpropagation during
training is achieved by applying additional weights to loss, and
loss,. Favorable final predictions will provide incentive for the

Two publicly available datasets were used for model training
and evaluation: Camelyonl6 [29] and TCGA-NSCLC [30].
Camelyon16 is a histopathology image dataset for breast cancer
metastasis detection. This dataset consists of 399 WSIs. WSIs
without background were divided into 256x256-sized patches
at 20x magnification. There are approximately 2.8 million
patches in total. TCGA-NSCLC includes two subtypes of lung
cancer: lung adenocarcinoma and lung squamous cell
carcinoma. This dataset comprises 1054 WSIs, which were
further divided into approximately 5.2 million patches at 20x
magnification. These patches were encoded into feature vectors
using a pretrained ResNetl8 encoder. The encoder was not
involved in model training, which is common in the MIL
research series. It is worth noting that the use of advanced
encoders or fine-tuning the training dataset to improve model
performance is widely acknowledged [32-34]. Therefore,
enhancing performance in this manner is beyond the scope of
discussion.

For the training and testing data split approach and the image
encoding process, the guidelines outlined in Reference [34]
were followed. This data partitioning method ensures a
balanced representation of samples from different classes.
Moreover, it is widely accepted [32-34], making comparisons
with baselines more intuitive and reproducible. The data
partition is depicted in Table 1 (consistent with the method used
in the abovementioned study, some corrupted WSIs were
removed).

B. Baselines and Evaluation Metrics

Eight bag-level MIL algorithms were selected for
comparison. Among them, we built AFD-MIL on the basis of
two classical algorithms, TransMIL (Transformer MIL) [32]
and ABMIL (Attention Based MIL) [8]. The other six
algorithms are CLAM-SB [28], CLAM-MB [28], DTFD-MaxS
[33], IBMIL-DTFD [34], IBMIL-ABMIL [34], and IBMIL-
TransMIL [34] (IBMIL models are SOTA). All baselines
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TABLE Il
WsI CLASSIFICATION RESULTS

Camelyonl6 TCGA-NSCLC
Methods
ACC (%) AUC (%) Recall (%) Precision (%) ACC (%) AUC (%) Recall (%) Precision (%)
CLAM-SB 86.05 86.82 73.47 87.80 89.52 89.36 80.58 97.65
CLAM-MB 86.82 85.10 69.39 94.44 86.19 89.59 99.03 78.46
ABMIL 84.50 84.07 81.71 86.71 81.43 88.95 85.84 82.75
TransMIL 83.72 81.29 81.06 85.43 85.24 90.70 85.31 85.46
DTFD-MaxS 82.95 82.77 80.09 84.85 81.9 88.91 83.77 82.29
IB-DTFD-
88.37 89.51 86.51 89.53 82.86 90.5 82.96 83.25
MaxS
IB-ABMIL 88.37 90.43 87.14 88.58 85.24 91.26 85.17 85.42
IB-TransMIL 83.72 88.71 82.93 83.14 85.24 92.54 87.06 85.80
AFD-ABMIL 90.70 16.20 90.52 16.45 89.80 18.09 86.27/0.44 93.33 711.9 98.17 19.22 93.26 17.95 93.64 110.89
AFD-TransMIL ~ 91.47 {7.75 9429 113.0  85.71 14.65 91.3015.87  93.3318.09  97.98 17.28 94.17 18.86 92.38 16.92

were configured according to their official settings where
available.

For the WSI classification task, the accuracy (ACC) and area
under the receiver operating characteristic (ROC) curve (AUC)
are the most important evaluation metrics. Given the high-risk
nature of medical tasks and the fact that existing assistive
diagnostic solutions are primarily used to help pathologists
exclude negative samples, recall and precision are also
important evaluation metrics. In comparison to the
classification task of two cancer subtypes in NSCLC, in the task
of classifying tumor versus normal tissue in Camelyon16, recall
and precision have greater importance.

C. WSI Classification Results

To demonstrate the effectiveness of the attention-based
feature distillation module proposed in this study in mitigating
the interference of redundant features by constraining the
selection of patches, thereby enhancing the classification
performance of the model, the main experiments in this paper
involve comparing the classification performance of multiple
models on two publicly available datasets. In the classification
tasks on both the Camelyon16 and NSCLC datasets, AFD-MIL
achieved the best performance, as shown in Table 2. On the
Camelyon16 dataset, the highest achieved ACC and AUC were
91.47% and 94.29%, respectively. On the NSCLC dataset, these
two numbers were 93.33% and 98.17%. Compared to the
original versions of ABMIL and TransMIL, AFD-MIL
demonstrated significant improvements in performance (the

green upward arrow in Table 2 indicates an improvement in
performance, while the red downward arrow indicates a decline
in performance). On the Camelyonl6 dataset, AFD-MIL did
not achieve the highest precision. This is because missing
positive testing samples in this dataset poses a significant risk
in the real world. Under the condition of maintaining a classifier
decision threshold at 50%, the weights of the models that
prioritize higher recalls were chosen as the final results. This
decision reflects the importance of capturing positive cases,
even at the cost of precision. Additionally, AFD-MIL
outperformed the other model with a decoupled MIL module,
IBMIL (SOTA), on both datasets. The attention-based feature
distillation module designed in this study was able to extract
more valuable features than the approach [33], while the global
loss optimization addressed the issue of two-step MIL: it was
hard to optimize the feature distillation module effectively. As
a result, better classification performance has been achieved.

D. Comparison of Feature Distillation Methods

In this study, the number of features to be distilled, denoted
as “k”, is a crucial parameter. Too few selected features can
result in a significant loss of information during the feature
distillation stage, and the model performance depends heavily
on the training in this stage. On the other hand, too many
selected features can increase interference in the attention
network fyen. Therefore, the choice of k has a significant
impact on the model performance. As indicated in Table 1, a
WSI typically contains thousands of patches. In this study, we
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Fig. 3. The curve depicting the variation of model performance with the feature distillation parameter k.
TABLE 1l
ABLATION STUDY RESULTS
ABMIL-based TransMIL-based
Component
Camelyonl6 TCGA-NSCLC Camelyonl6 TCGA-NSCLC

FD Attention-based FD Global Loss ACC AUC ACC AUC ACC AUC ACC AUC
X X X 84.5 84.07 81.43 88.95 83.72 81.29 85.24 90.7
\ X X 82.95 82.77 81.9 88.91 88.37 93.62 90.95 97.88
N 88.37 86.28 92.38 92.32 89.92 93.78 92.38 97.15
J 3 N 90.7 90.52 93.33 98.17 91.47 94.29 93.33 97.98

selected various values for k to evaluate the performance
differences resulting from changes in this parameter, as shown
in Fig. 3. The experimental results indicate that as k increases,
the results of all the groups show an initial improvement
followed by a decline. This result suggests that the number of
features selected for feature distillation should be maintained at
a certain level, such as k = 16 or k = 32. A too small k value
can result in too few features being passed to the subsequent
network, making WSI classification challenging, while too
large a k value can lead to excessive features that may
negatively impact the model performance. Simultaneously, as
k increases, the network handles more features, inevitably
leading to computational burden. According to the results
shown in Fig. 3, we have identified the convex point of the
curve, and thus did not further increase k to train the models.

E. Ablation Study

To validate the effectiveness of the proposed attention-based
feature distillation and global loss optimization modules in this
study, we conducted four sets of comparative experiments on
both datasets by incrementally adding the newly designed
components. The groups were as follows: 1. No feature

distillation MIL (conventional ABMIL and TransMIL); 2. No
attention-based feature distillation or global loss optimization
(conventional two-step MIL); 3. MIL with attention-based
feature distillation; and 4. Attention-based feature distillation
MIL and global loss optimization. As shown in Table 3, the
experimental results indicate that both the new model structures
and the optimization methods proposed in this study have led to
a positive improvement in the classification task performance.
AFD can improve the performance of the original two-step MIL
model by optimizing the logic of feature distillation. This
addresses the known issue of poor performance in the first step
of the original two-step MIL, which is just based on instance-
level MIL. Additionally, the introduction of global loss
optimization changes the original situation, in which the feature
distillation’s loss optimization is unrelated to the model’s final
prediction results, providing more fine-grained guidance for
feature distillation.

F. Comparison of Feature Distillation Methods: Max-
Positive and Max-Positive&Negative

As discussed in Section 3.a, Max-Positive actively selects the
patches with the highest positive probability among all patches,
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Fig. 4. The comparison heatmaps between the ground truth and the regions of interest identified by AFD-MIL.

TABLE IV
RESULTS OF DIFFERENT FEATURE DISTILLATION METHODS
Camlyonl16 TCGA-NSCLC
Methods
ACC AUC Recall Precision ACC AUC Recall Precision
Max-Positive 91.47 9429 85.71 91.30 9048 97.14 95.15 86.73
TransMIL
Max-Positive&Negative 92.25 94.29 79.59 100.0 9333 9798 94.17 92.38
Max-Positive 90.70 90.52  89.8 86.27 89.52 0.8937 81.55 96.55
ABMIL
Max-Positive&Negative 89.15 86.51 75.51 94.87 93.33 0.9817 93.26 93.64

which is more effective for the benign-malignant classification
task on the Camelyon16 dataset. However, we hypothesize that
this may not be the case for tasks involving classification of two
subtypes of cancer (e.g., NSCLC). For negative samples, the
patch with the highest probability of being positive may
represent non-tumor tissue rather than the specific subtype of
interest (representing negative tumors), such as lung
adenocarcinoma. Therefore, we apply a maximum positive and
negative method, which combines the patches most likely to be
negative with those most likely to be positive. The results
confirm our hypothesis. As shown in Table 4, the Max-Positive
and Max-Positive&Negative methods achieved better
performance on Camelyonl6 and NSCLC, respectively.
Although AFD-TransMIL with Max-Positive&Negative
achieved higher accuracy on Camelyonl6, the significant
difference in recall compared to that achieved by Max-Positive
is a substantial risk for the benign—malignant tumor
classification task. Therefore, Max-Positive&Negative was not
adopted for this dataset.

G. Heatmap Visualization of the Feature Distillation
Module

To analyze the effectiveness of the feature distillation
module in AFD-MIL for selecting patches, we compared the
selected patches with the ground truth using heatmaps on the
Camelyonl6 test set, which contains pixel-level annotations.
Fig. 4 depicts four sets of comparisons between the ground truth
and the regions selected by AFD-MIL. It is evident that there is
a substantial overlap between the ground truth (left, areas
enclosed by the green curve while not encompassed by the red
curve) and the regions selected by AFD-MIL (right, shaded in
red, with the intensity of color indicating the probability of the
patch being predicted as tumor by AFD-MIL). It is evident that
there is a significant overlap between the ground truth and the
regions selected by AFD-MIL. However, the regions selected
by AFD-MIL do not fully cover all ground truth regions. This
is due to the relatively small parameter k. It is evident that
AFD-MIL has already demonstrated the ability to select tumor
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regions similar to pathologists. AFD-MIL demonstrates the
ability to accurately capture tumor features in pathological
images, thereby enhancing the trustworthiness and credibility
of its performance in classification tasks. This result
demonstrates the potential application of this method in tasks
such as tumor detection and diagnostic assistance, not limited
to classification tasks. For example, leveraging AFD-MIL can
provide cues to pathologists, assisting them in quickly and
accurately completing diagnostic tasks.

V. CONCLUSION

The AFD-MIL proposed in this study is a novel orthogonal
MIL methodology that is capable of significantly enhancing WSI
classification performance. In contrast to past research that
focused on optimizing image encoders and feature fusion
mechanisms to eliminate redundant features, this study proposes
a dual-channel feature distillation based on attention mechanisms
and instance-level classification. This approach enables the
identification of the most important patches in WSI,
fundamentally eliminating redundant features. Additionally,
compared to traditional two-step MIL, global loss optimization
provides finer-grained guidance for the learning process of the
feature distillation module. AFD-MIL achieves SOTA
performance in both breast cancer and non-small cell lung cancer
classification tasks. Furthermore, AFD-MIL exhibits excellent
interpretability, with the selected patches highly overlapping with
tumor regions. Due to its compatibility with other models, AFD-
MIL possesses high scalability and is poised for application in
large-scale research and clinical diagnostic assistance.
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