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Abstract001

Multimodal Large Language Models (MLLMs) have002
shown great potential in addressing complex reasoning003
tasks. However, their progress is often hindered by mis-004
leading or ambiguous internal knowledge resulting from005
training biases. Although Chain-of-Thought (COT) rea-006
soning and its variants have proven effective in enhanc-007
ing reasoning task performance, they often fail to correct008
errors in intermediate steps. Similarly, judge-based meth-009
ods, while useful for validating reasoning steps, frequently010
struggle to identify and rectify specific mistakes. To tackle011
these challenges, we propose CorrectFlow framework, a012
novel approach consisting of two key agents. In Correct-013
Flow, one agent extracts knowledge from visual and textual014
modalities to mitigate internal knowledge errors in MLLMs,015
while the other serves as a multi-level agent responsi-016
ble for intermediate reasoning and solution generation.017
The multi-level agent serves as the core of our approach018
and implements three key strategies: self-suspect mecha-019
nism, active-abandonment mechanism, and advanced agent020
takeover mechanism. Within this framework, when lower-021
level agents identify potential reasoning errors, they pos-022
itively abandon the current thought process and delegate023
it to higher-level agents based on the task’s complexity.024
By incorporating this real-time correction mechanism into025
a multimodal reasoning framework, CorrectFlow signifi-026
cantly enhances the accuracy and reliability of collabora-027
tive agents, particularly in complex reasoning scenarios.028
Comprehensive qualitative and quantitative experiments on029
widely used benchmarks demonstrate that CorrectFlow sur-030
passes existing baseline methods, underscoring its effective-031
ness in improving model performance and addressing both032
MLLM limitations.033

1. Introduction034

Recent advancements in Multimodal Large Language Mod-035
els (MLLMs) [1, 6, 17, 20, 29–31, 37, 48] have signif-036

What is the size relationship between these two pairs of magnets?

The two pairs of magnets, labeled Pair 1 and Pair 2, appear to be aligned 
differently but have similar dimensions. ..., it’s likely that the individual 
magnets in each pair are of the same size, as they visually appear 
similar. ...

Is the group of people gathered 
under the umbrella in this picture 
discussing the details of a book 
sale event?

Yes, it is likely that the group of people gathered under the umbrella are 
discussing information related to the book sale. ..., which suggests they 
might be discussing which books to buy or the arrangements of the event.

Verification bias：
The model, noticing the "Book Sale" sign, incorrectly assumes that the people 
under the umbrella are related to the book sale, thus reinforcing this 
misunderstanding in the response and overlooking the possibility that they 
might just be seeking shelter from the rain or waiting for another event.

Intrinsic errors：
The statement "it’s likely ... similar" assumes that visual similarity is a reliable 
indicator of identical dimensions. This assumption may be incorrect if the image 
does not provide a scale or detailed measurements, leading to a potential 
misinterpretation of the actual sizes of the magnets.

(a) Example for Intrinsic Errors

(b) Example for Verification Bias

Figure 1. Examples to illustrate two limitations in MLLMs: (a)
intrinsic errors and (b) verification bias.

icantly propelled the fields of perception, such as object 037
detection [42], segmentation [15, 32], and video under- 038
standing [7, 18, 41], driving the development of special- 039
ized MLLMs tailored for these downstream tasks. How- 040
ever, despite their success in perception, MLLMs still face 041
substantial challenges when it comes to complex reason- 042
ing tasks, especially those scenarios involving complex and 043
long-horizon problem-solving. 044

To tackle such tasks, methods like Chain-of-Thought 045
(CoT) reasoning [36] and its variants [10, 12, 22, 28, 44, 47] 046

1



CVPR
#2259

CVPR
#2259

CVPR 2025 Submission #2259. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

have emerged. These methods break down complex reason-047
ing processes into smaller steps and use strategies such as048
self-correction and self-criticism to evaluate the accuracy049
of reasoning paths [36]. While these techniques can help050
mitigate logical errors during inference, two critical issues051
remain largely unaddressed: (1) intrinsic errors that arise052
from the MLLMs themselves, and (2) verification bias,053
which stems from the limited capability of MLLMs to ac-054
tively correct errors and instead only verify the reasoning055
steps.056

In Fig. 1, we illustrate both of the aforementioned errors.057
From Fig. 1 (a), it is evident that intrinsic bias can mani-058
fest as a form of hallucination, which is difficult to mitigate059
in the absence of external knowledge about the problem-060
solving object. When solving reasoning problems, these061
intrinsic errors could easily mislead the model into an er-062
roneous reasoning path right from the first step, ultimately063
leading to failure in subsequent steps. Meanwhile, we also064
show the verification bias in Fig. 1 (b). This verification bias065
reveals another characteristic of MLLMs: they can detect066
or suspect reasoning errors, but they do not actively correct067
them; instead, they only verify the validity of their reason-068
ing steps.069

To overcome these challenges, we introduce Correct-070
Flow, a novel framework that leverages multi-agent collab-071
oration to effectively address both intrinsic and verification072
biases. CorrectFlow features a two-agent system: the first073
agent, a knowledge extractor, gathers objective knowledge074
from both image and text data to provide relevant back-075
ground information about the object being reasoned about.076
This knowledge is essential, as MLLMs can become con-077
fused, especially when dealing with visually similar ob-078
jects or insufficient background context. By leveraging the079
knowledge extractor, CorrectFlow mitigates internal errors080
during the initial reasoning steps.081

However, reasoning tasks often demand more than just082
knowledge extraction; they require continuous validation083
and correction. This is where CorrectFlow’s multi-level084
agent system comes into play. The system introduces three085
key strategies to address verification biases: (1) Confidence086
Check, (2) Path Pruning, and (3) Expert Intervention. These087
strategies ensure that the MLLM performs self-evaluation,088
expands reasoning paths, and receives real-time corrections089
when necessary. In CorrectFlow, the highest-level agent090
evaluates the intermediate reasoning path from the root to091
the current step, classifying it as accurate, erroneous, or un-092
certain. Unlike previous Chain-of-Thought (CoT) methods093
and their variants, CorrectFlow introduces a novel mecha-094
nism: when a lower-level agent experiences self-doubt or095
detects potential errors in the reasoning path, a higher-level096
agent takes over, redirecting the reasoning process. This097
approach ensures more robust and reliable reasoning. In098
summary, our contributions are as follows:099

• We present CorrectFlow, a novel multi-agent collabora- 100
tion framework designed to overcome the limitations of a 101
single MLLM in mitigating intrinsic errors and verifica- 102
tion biases. By separating knowledge extraction from rea- 103
soning validation, CorrectFlow enhances robustness and 104
minimizes internal reasoning errors. 105

• Three core strategies are proposed: (1) Confidence Check 106
which stimulates the MLLM’s ability to self-evaluate; (2) 107
Path Pruning to facilitate the expansion of thought paths; 108
and (3) Expert Intervention for providing real-time cor- 109
rection for reasoning paths. These strategies work collec- 110
tively to ensure reliable and accurate reasoning. 111

• CorrectFlow pioneers a dynamic escalation mechanism 112
that enables lower-level agents to transfer control to 113
higher-level agents upon identifying potential reasoning 114
errors, thereby surpassing traditional passive validation 115
methods. This active intervention leads to more refined 116
and robust reasoning outcomes. 117

• We extensively evaluate CorrectFlow on public bench- 118
mark datasets, demonstrating its superior performance 119
compared to existing baseline methods, effectively ad- 120
dressing both intrinsic biases and verification limitations 121
in multimodal reasoning tasks. 122

2. Related Work 123

Multi-modal Large Language Model. Since the advent 124
of large language models (LLMs), their remarkable suc- 125
cess across numerous language-based applications has in- 126
spired the development of multimodal large language mod- 127
els (MLLMs). These models aim to bridge the gap between 128
vision and language modalities, enabling richer understand- 129
ing and reasoning across both domains. In early research, 130
MLLMs are regarded as a special way to extend the capa- 131
bilities of LLMs to handle diverse tasks and modalities, by 132
connecting specialized vision models. These models mainly 133
include MiniGPT [3, 48], VisualChatGPT [37], Hugging- 134
GPT [30], LMDrive [29], and MM-REACT [38], which 135
integrate LLMs with vision models to facilitate complex in- 136
teractions between visual and textual information. Recently, 137
the focus of MLLMs has shifted towards aligning visual 138
and language representations more effectively. This has 139
been accomplished through extensive training on datasets 140
consisting of image-caption pairs or image-question dia- 141
logues. Two main effective approaches have been pro- 142
posed. The first approach, LLaVA [20], trains an MLP 143
projector to map image tokens to a representation space 144
aligned with pre-trained LLMs, fostering effective modal- 145
ity integration. The second approach, BLIP-2 [17], uti- 146
lizes a query transformer (Q-Former) to learn image embed- 147
dings by employing learnable queries after extracting im- 148
age features. Besides the model architecture, a two-stage 149
training strategy has been explored and become a popu- 150
lar approach for MLLMs [1, 6, 31, 48]. In the first stage, 151
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Figure 2. CorrectFlow is a multi-agent collaboration framework that enhances the robustness of MLLMs by separating knowledge extrac-
tion from reasoning validation, thereby mitigating intrinsic errors and verification biases. It introduces three core strategies—Confidence
Check, Path Pruning, and Expert Intervention—that collectively ensure reliable and accurate reasoning. Compared to CoT and its variants,
CorrectFlow features a dynamic escalation mechanism, allowing lower-level agents to transfer control to higher-level agents upon detecting
reasoning errors, resulting in more refined and robust outputs.

the models undergo pre-training using large-scale image-152
caption datasets, laying the foundation for cross-modal un-153
derstanding. The second stage focuses on refining align-154
ment between modalities using question-answering triplets155
to ensure nuanced understanding and precise reasoning.156
With the model structure and training strategies, MLLMs157
have achieved promising performance in various perception158
tasks, including fine-grained localization [15, 32], such as159
object detection [42], video understanding [7, 18, 41], and160
image generation [13, 27]. Although MLLMs have shown161
promising results in perception tasks, they still face signif-162
icant challenges in reasoning tasks, which stem not only163
from limitations in their perception capabilities but also164
from biases inherent in the models themselves, leading to165
misunderstandings.166

CoT Reasoning in LLMs and MLLMs. Recent stud-167
ies have proven using Chain-of-Thought (CoT) reasoning168
to improve problem-solving skills. CoT prompts encour-169
age LLMs to express intermediate reasoning steps, which170
considerably enhances their reasoning ability. Studies such171
as [36] and [14] have demonstrated that simple prompting172
techniques or a few detailed examples can significantly en-173
hance the reasoning performance of LLMs in both zero-174
shot and few-shot scenarios. The type methods mainly cur-175
rent research focuses on optimizing these methods through176
a more refined selection of examples based on factors like177
similarity, diversity, and complexity [10, 22, 28, 44], while178
also incorporating structured approaches, including pro-179

gramming [5], problem decomposition [12, 47], and ratio- 180
nale calibration [33]. 181

Similar to LLMs, Chain-of-Thought (CoT) prompt- 182
ing has also shown significant effectiveness in enhanc- 183
ing the performance of multimodal large language models 184
(MLLMs). For example, [45] leveraged visual inputs to 185
generate relevant rationales, thereby improving the model’s 186
reasoning capabilities. [46] approached the problem by 187
breaking down questions into sub-questions and utilizing 188
answers from a visual question answering (VQA) model 189
to develop rationales. In addition, [40] directed the model 190
to solve complex questions involving multiple image inputs 191
by assessing similarities and differences across the images. 192
Moreover, [24] was a pioneer in using LLMs to generate 193
scene graphs, subsequently using these models to formulate 194
answers. 195

3. CorrectFlow 196

Here we present CorrectFlow, an innovative zero-shot 197
prompting approach that leverages a multi-agent framework 198
to enhance the reasoning capabilities of Multimodal Large 199
Language Models (MLLMs) in tackling complex tasks. 200
CorrectFlow enables zero-shot learning solely through 201
prompts, bypassing the need for annotated data for fine- 202
tuning. The core idea is to coordinate multiple MLLM 203
agents to dynamically correct erroneous reasoning paths, 204
thereby broadening and deepening the reasoning process. 205

Briefly reviewing MLLMs, these models utilize a pre- 206
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What is the size relationship between these two pairs of magnets?
A: The magnitude of the magnetic force is smaller in Pair 2.
B: The magnitude of the magnetic force is the same in both pairs.

C: The magnitude of the magnetic force is smaller in Pair 1.
D. nan.

GPT4o Grounding
Dino

Figure 3. Open-world detectors often struggle to accurately identify relevant objects in images.

SMU Classification: Restricted

The image contains a grid of symbols arranged in a pattern. There are six symbols in total ... Between the rows, 
there are circular icons labeled with letters: A, B, C, D, and E.
Top row symbols: 1. A mirrored &quot;C&quot; shape. 2. A shape resembling a &quot;D&quot; with a vertical 
line through it. 3. Three horizontal lines stacked vertically.
Bottom row symbols:1 . An infinity-like symbol. 2. An upside-down &quot;T.&quot; 3. A shape resembling the 
number &quot;8.&quot;
The circular icons with letters are positioned between the rows, suggesting a sequence or pattern to be identified. 
The task is to determine which lettered option (A, B, C, D, E) corresponds to the next object in the sequence.

+Which object comes next? Provide a precise, objective description of 
the image content. Then, ... content.

To effectively answer the question &quot;Which object comes 
next?&quot;, the following key factors should be considered:
1. Contextual Information: ... .
2. Pattern Recognition: ... .
3. Sequence Type: ... .
4. Attributes of Objects: ... .
5. Insufficient Information: ... .

Which object comes next?

Figure 4. The pipeline of our knowledge extractor.

trained vision encoder ϕw(·), parameterized by w, to con-207
vert an image I into an embedding, and a language encoder208
ψo, parameterized by o, to encode the task prompt Ptask209
(e.g., a question or caption request). These embeddings are210
then fed into a pretrained language model fθ, parameterized211
by θ, to generate a response R:212

R = fθ(ϕw(I), ψo(Ptask)).213

As the vision encoder ϕw(·) has been pretrained on paired214
image-text descriptions, it maps visual input into a shared215
text embedding space, enabling the LLM fθ to reason seam-216
lessly within a unified embedding space.217

3.1. Knowledge Extractor218

As shown in Fig. 1 (upper), MLLMs often display inter-219
nal errors when reasoning through complex and incomplete220
tasks. These errors likely stem from training biases that fa-221
vor certain reasoning paths, leading MLLMs to overlook222
parts of the user’s problem and produce incomplete or incor-223
rect conclusions. Additionally, MLLMs commonly struggle224
to accurately detect and relate all relevant objects in an im-225
age, further complicating reasoning.226

To address this, a straightforward solution would be227
to extract all objects relevant to the user’s query to help228
MLLMs understand object relationships in context. How-229
ever, in practice, open-world detectors frequently fail to230

identify these objects accurately as illustrated in Fig. 3. 231
Even when successfully detected, linking these objects to 232
the user’s question presents a major challenge, as incorrect 233
initial relationships between objects established during the 234
initial reasoning step can lead to cascading errors in reason- 235
ing. 236

To mitigate these challenges, we introduce a dedicated 237
“knowledge extractor” agent, designed to provide MLLMs 238
with objective contextual knowledge drawn from the image 239
and task prompt. Fig. 4 illustrates this process. This agent 240
gathers supplementary information to guide the reasoning 241
process, enabling a more comprehensive understanding of 242
the user’s question. The process begins with extracting key 243
information from both the task prompt Ptask and image I. 244
Given Ptask and a textual key point generation prompt Ptxt, 245
we first derive textual key points Ktxt directly from Ptask. 246
Next, we use Ktxt and an image key point generation prompt 247
Pimg to identify objective facts Kimg within the image I, thus 248
isolating each modality to avoid cross-modal interference: 249

Ktxt = fθ(ψo(cat(Ptask,Ptxt))),

Kimg = fθ(ϕw(I), ψo(cat(Pimg,Ktxt,Ptask))),
(1) 250

where the operation cat denotes concatenating the inputs. 251

This knowledge extractor agent systematically identifies 252
the query’s objects and extracts objective attributes related 253
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to them from both the image and text. This enriched context254
allows the MLLM to holistically interpret the problem, fo-255
cusing on the full image rather than isolated objects or par-256
tial conclusions. By integrating this knowledge, the MLLM257
can better align its reasoning steps with the intended so-258
lution, significantly reducing the chance of errors in initial259
reasoning steps.260

3.2. Multi-level Problem Solver261

At the core of our CorrectFlow framework is a novel multi-262
level problem-solving approach that enhances the robust-263
ness and reliability of reasoning in complex tasks. Inspired264
by automated curriculum learning, we introduce a hierar-265
chical structure consisting of multiple low-level problem-266
solving agents and a high-level problem-solving agent. In267
this framework, the low-level agents act as “students,” while268
the high-level agent functions as a “teacher,” guiding the269
reasoning process in real time. This relationship allows270
students to leverage the teacher’s higher expertise, ensur-271
ing more accurate and efficient reasoning. The motiva-272
tion behind this setup is intuitive: when students encounter273
uncertainty, they can request help from the teacher to re-274
solve potential errors. This teacher-student dynamic mirrors275
real-world learning, where a teacher helps correct misun-276
derstandings, fostering more accurate decision-making and277
deeper understanding.278

In our multi-level problem-solving framework, we adopt279
an O1-inspired approach, combining self-correction and280
cross-validation. At each reasoning step, multiple indepen-281
dent paths are generated, allowing the system to evaluate282
the state from different perspectives or knowledge sources.283
This multi-perspective validation enables a thorough re-284
assessment, comparing outcomes across paths. When sig-285
nificant discrepancies are detected, the system analyzes and286
adjusts the reasoning to correct biases or errors. While the-287
oretically effective, MLLMs often fail to identify the root288
causes of mistakes, allowing errors to propagate along the289
reasoning path.290

To overcome this limitation, we introduce three piv-291
otal strategies at each step of reasoning: (1) Confidence292
Check, (2) Path Pruning, and (3) Expert Intervention. These293
strategies work together to ensure robustness, accuracy, and294
adaptability in the reasoning process.295

Confidence Check. It enables the reasoning agent to self-296
assess the validity of each reasoning step. When an agent297
detects potential flaws or inconsistencies, it generates a298
“self-suspect” signal. This signal prompts further investi-299
gation or assistance from a higher-level agent. This process300
is inspired by iterative questioning, where doubts lead to301
deeper scrutiny, ensuring more reliable conclusions.302

Path Pruning. It discards the unreliable path before errors303
can propagate when an agent is uncertain about the correct-304
ness of a reasoning path. This ensures the system only pro-305

gresses along valid reasoning paths, preventing the system 306
from getting stuck or moving forward with flawed reason- 307
ing. 308
Expert Intervention. When a self-suspect signal or error 309
is detected, control is escalated to the high-level agent, the 310
“teacher,” which performs a more thorough analysis of the 311
reasoning process. The high-level agent evaluates the rea- 312
soning path and decides on the next action: 313
• Correct: If the reasoning path is validated, no further ac- 314

tion is needed. 315
• Wrong: If a logical error is identified, teacher agent cor- 316

rects the reasoning path based on prior steps. 317
• Uncertain: If teacher agent is unsure, “Path Pruning” is 318

triggered to discard the uncertain path. 319
In Appendix, we provide a detailed figure to summarize the 320
reasoning steps in our multi-level problem-solving agents. 321

These mechanisms create a robust feedback loop that 322
continuously refines the reasoning process, minimizing er- 323
ror propagation. The dynamic interplay between low-level 324
agents (students) and the high-level agent (teacher) creates 325
an adaptable, self-correcting system that is both efficient 326
and reliable. This makes it ideal for complex problem- 327
solving tasks where precision is critical. Our multi-level 328
problem-solving approach bridges the gap between theoret- 329
ical advancements and real-world applications, empowering 330
agents to tackle challenging tasks with confidence and ac- 331
curacy. 332

4. Experiment 333

4.1. Implementation Details 334

GPT-4O. The architectural and pretraining details of GPT- 335
4O [26] are not publicly available. Nevertheless, we use 336
GPT-4O as the MLLM backbone due to its state-of-the-art 337
language reasoning capabilities. This allows us to evalu- 338
ate the performance of our proposed method on an LMM 339
with advanced reasoning skills, providing insights into its 340
effectiveness in solving complex multi-step problems. In 341
addition to using GPT-4O, we also conducted experiments 342
with other (MLLMs) as our base models. Detailed results 343
of these additional experiments are provided in the supple- 344
mentary materials. 345

4.2. Multimodal Reasoning Benchmarks 346

The implementation of CorrectFlow has undergone rig- 347
orous evaluation using several benchmark datasets, in- 348
cluding MME, MathVista [23], BLINK [9], MMStar [4], 349
CCBench [21], and RealWorldQA [43]. These benchmarks 350
are specifically designed to assess the multimodal percep- 351
tion and reasoning capabilities of large multimodal lan- 352
guage models (LMMs). Both MME and MathVista feature 353
different splits that evaluate general visual perception and 354
reasoning. For instance, MME includes perception tasks 355
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Table 1. Performance Comparison on Mathvista dataset.

Method Overall SCI TQA NUM ARI VQA GEO ALG GPS MWP LOG FQA STA
LLaVA-OneVision-72B (SI) 66.9 64.8 63.3 51.4 61.2 54.2 75.3 70.8 77.4 77.4 21.6 62.1 71.4

InternVL2-Llama3-76B 65.6 63.1 66.5 41.7 62.0 49.2 66.1 65.8 67.8 75.8 32.4 67.3 76.7
Ovis1.5-Gemma2-9B 65.6 64.8 60.1 50.7 66.3 54.7 62.8 58.7 63.5 87.1 13.5 62.8 74.1

InternVL2-40B 64.0 60.7 63.3 41.7 64.9 58.7 56.5 56.9 57.2 71.0 21.6 68.4 76.7
NVLM-D-72B 63.9 66.4 68.4 40.3 50.7 41.9 76.2 73.0 78.4 65.1 16.2 63.9 71.8

InternLM-XComposer2.5 63.7 55.7 55.7 43.8 64.0 53.1 62.8 56.9 62.0 83.3 16.2 63.2 73.4
Ovis1.5-Llama3-8B 63.0 63.1 60.8 48.6 65.7 57.5 61.1 57.3 61.1 79.6 21.6 58.0 67.1

POINTS-Qwen2.5-7B 63.0 61.5 61.4 49.3 61.5 58.1 70.7 66.5 72.6 71.0 13.5 54.3 63.5
POINTS-Yi-1.5-9B 63.0 61.5 59.5 46.5 61.5 55.9 70.3 66.2 72.1 73.1 10.8 55.8 65.8

LLaVA-OneVision-7B 62.3 65.6 60.8 45.1 57.5 47.5 68.6 64.1 70.2 76.9 16.2 56.9 66.1
Claude3.5-Sonnet 61.6 75.4 74.1 31.2 53.5 45.8 58.6 61.6 57.7 59.1 35.1 69.5 77.7
RBDash-v1.2-72B 61.6 59.8 65.8 40.3 53.3 41.9 68.2 66.9 69.7 74.2 24.3 57.2 69.1

Qwen2-VL-7B 61.4 66.4 63.3 41.0 58.9 57.0 51.0 51.6 51.0 66.1 27.0 68.0 73.8

GPT-4o (0806, high) 62.7 71.3 75.3 42.4 56.9 48.0 65.7 68.3 65.9 68.3 32.4 58.7 69.1
CorrectFlow (GPT-4o(0806, high)) 67.0 72.1 73.4 49.3 63.2 55.9 69.5 70.1 70.2 72.0 37.8 64.7 74.4

Table 2. Performance Comparison of reasoning task on MME dataset.

Method Overall Code
Reasoning

Numerical
Calculation

Text
Translation

Commonsense
Reasoning

Qwen-VL-Max-0809 723.9 177.5 170.0 200.0 176.4
InternVL2-Llama3-76B 658.6 152.5 185.0 162.5 158.6

NVLM-D-72B 655.7 160.0 162.5 162.5 170.7
GPT-4o (0513, low) 719.3 182.5 170.0 192.5 174.3

LLaVA-OneVision-72B 583.9 145.0 177.5 100.0 161.4
GPT-4o (0513, high) 696.1 177.5 147.5 192.5 178.6
Qwen-VL-Plus-0809 633.9 157.5 125.0 200.0 151.4

InternVL2-40B 572.1 137.5 117.5 170.0 147.1
JT-VL-Chat 608.2 145.0 170.0 132.5 160.7

Qwen-VL-Max 576.1 132.5 107.5 192.5 143.6
CongRong 521.8 97.5 100.0 185.0 139.3

MiniCPM-V-2.6 597.9 155.0 117.5 177.5 147.9

GPT-4o (0806, high) 696.4 185.0 147.5 192.5 171.4
CorrectFlow (GPT-4o(0806, high)) 766.1 185.0 200.0 188.57 192.5

Table 3. Performance Comparison of perception task on MME dataset.
Method Overall OCR Artwork Color Count Existence Landmark Position Posters Scene

Qwen-VL-Max-0809 1585.5 177.5 156.2 190.0 170.0 200.0 183.5 155.0 189.1 164.2
InternVL2-Llama3-76B 1572.4 147.5 173.2 180.0 180.0 195.0 179.8 173.3 188.4 164.2

NVLM-D-72B 1586.2 185.0 141.8 190.0 170.0 200.0 179.5 168.3 187.1 164.5
GPT-4o (0513, low) 1562.7 192.5 144.0 180.0 190.0 195.0 175.5 145.0 192.2 148.5

LLaVA-OneVision-72B 1570.5 162.5 153.2 185.0 170.0 200.0 178.8 178.3 183.7 159.0
GPT-4o (0513, high) 1546.2 192.5 145.2 185.0 185.0 185.0 182.0 133.3 191.2 147.0
Qwen-VL-Plus-0809 1513.3 155.0 150.0 180.0 158.3 180.0 185.0 160.0 182.0 163.0

InternVL2-40B 1565.0 162.5 170.0 188.3 180.0 190.0 180.2 153.3 189.5 151.2
JT-VL-Chat 1535.0 117.5 161.5 185.0 170.0 195.0 185.0 173.3 184.7 163.0

Qwen-VL-Max 1528.6 177.5 150.2 168.3 160.0 190.0 191.0 140.0 187.8 163.8
CongRong 1576.8 177.5 151.0 176.7 175.0 195.0 187.2 168.3 171.1 175.0

MiniCPM-V-2.6 1519.4 192.5 149.0 168.3 160.0 195.0 177.5 146.7 177.9 152.5

GPT-4o (0806, high) 1550.3 200.0 139.5 178.3 190.0 195.0 189.2 113.3 193.5 151.5
CorrectFlow (GPT-4o(0806, high)) 1540.7 192.5 148.3 190 180 195.0 148.3 153.3 190.4 143.0

that assess an LMM’s ability to identify instances and un-356
derstand instance attributes, as well as higher-order reason-357
ing tasks such as scene understanding and instance inter-358
action. MathVista, on the other hand, contains complex359
mathematical problems, often requiring extensive inference360
steps. We evaluate our method on MME, excluding the in-361

stance identification task, and on the entirety of MathVista. 362
Additionally, we use the reasoning sets of BLINK, MM- 363
Star, CCBench, and RealWorldQA to further evaluate our 364
approach, focusing on the LMMs’ ability to provide de- 365
tailed, long-form answers to visual questions. 366
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Table 4. Performance Comparison on MMbenc benchmark.

Method Code
Reasoning

Numerical
Calculation

Text
Translation

Commonsense
Reasoning

CoT 185.0 192.5 177.5 176.4
CoT-SC 192.5 192.5 185.0 180.7

SoT 177.5 132.5 177.5 172.1
ToT 192.5 200 177.5 172.5

CorrectFlow 185 200 188.57 192.5

4.3. Baseline367

In our experiments, we compared our proposed Correct-368
Flow methodology with two prompting baselines. The first369
baseline aimed to evaluate the added value of our method to370
pretrained LMMs [2, 8, 11, 16, 19] by applying the model371
to the benchmark without any prompt engineering as shown372
in Table 1, Table 2, and Table 3. The second baseline uti-373
lized a zero-shot (ZS) Chain-of-Thought (CoT) prompting374
method to assess the benefits of CorrectFlow compared to375
a state-of-the-art (SOTA) CoT [35] approach. The ZS-CoT376
method involves two main steps: (i) given the input question377
and text, the reasoning prompt ”Let’s think step-by-step.” is378
appended after the question to guide the model in generating379
reasoning for an answer, and (ii) since the answer is implic-380
itly embedded in the generated reasoning, the second step381
involves passing the image, question, generated reasoning,382
and an answer extraction phrase to produce the response in383
the desired format. We also compared CorrectFlow to re-384
cent SOTA multimodal CoT prompting methods, including385
COT-SC [34], SoT [25], and ToT [39], on the reasoning split386
of the MME benchmark, as summarized in Table 4.387

4.4. Result388

Results are presented in Table 1, Table 2, and Table 3. One389
notable advantage of our method is its significant improve-390
ment in performance on several multimodal reasoning tasks,391
including the complex MathVista benchmark. We demon-392
strate that applying CorrectFlow to GPT-4O outperforms393
the base models across various benchmarks, highlighting394
the effectiveness of our approach. Figure 5 provides spe-395
cific examples where CorrectFlow enhances performance396
over the baselines, as well as instances where it still en-397
counters challenges. Additional results can be found in the398
supplementary materials.399
Multimodal Reasoning Tasks. CorrectFlow outperforms400
the baselines in the reasoning test category across Real-401
WorldQA, BLINK, MMStar, and CCBench in Table 5, Ta-402
ble 6, Table 7 and Table 8. From these datasets, we ob-403
serve that CorrectFlow significantly improves performance404
on complex tasks involving mathematical reasoning and405
logical understanding, particularly those requiring extended406
reasoning steps. Notably, our method also proves effective407
on Chinese datasets. These results provide strong evidence408

Table 5. Performance Comparison on RealWorldQA benchmark.

Method Overall
Qwen2-VL-72B 76.7

GPT-4o (0513, high) 75.4
Qwen-VL-Max-0809 74.2

LLaVA-OneVision-72B 73.9
LLaVA-OneVision-72B (SI) 73.7

Molmo-72B 73.7
InternVL2-Llama3-76B 72.7
Ovis1.6-Gemma2-9B 70.7
Qwen-VL-Plus-0809 70.1

InternVL2-40B 70.1
LLaVA-OneVision-7B 69.9

NVLM-D-72B 69.9
OmChat-v2.0-13B 69.8

Step-1.5V 69.7
LLaVA-OneVision-7B (SI) 69.5

GPT-4o (0806, high) 76.5
CorrectFlow (GPT-4o(0806, high)) 77.3

Table 6. Performance Comparison on Blink benchmark.

Method Multi-view
Reasoning

Spatial
Relation

Qwen-VL-Max-0809 40.6 88.1
Gemini-1.5-Pro 53.4 79.7
Phi-3.5-Vision 48.1 69.2

Gemini-1.5-Flash 57.1 77.6
InternVL2-26B 42.9 84.6

Yi-Vision 48.1 82.5
MiniCPM-V-2.6 55.6 81.1

LLaVA-OneVision-7B 54.1 80.4
LLaVA-Next-Interleave-7B 44.4 71.3

GPT-4o (0806, high) 45.1 82.5
CorrectFlow (GPT-4o(0806, high)) 47.4 83.2

Table 7. Performance Comparison on MMstar benchmark.

Method Logical
Reasoning Math

Qwen-VL-Max-0809 72.4 76.0
Qwen2-VL-72B 72.4 72.8

InternVL2-Llama3-76B 72.4 75.2
LLaVA-OneVision-72B 68.8 74.4

LLaVA-OneVision-72B (SI) 67.2 72.0
Step-1.5V 68.4 64.4

InternVL2-40B 69.2 70.0
JT-VL-Chat-V3.0 69.6 76.8

GPT-4o (0513, high) 72.0 66.4
NVLM-D-72B 68.8 70.8

Molmo-72B 65.2 60.8

GPT-4o (0806, high) 72.0 67.6
CorrectFlow (GPT-4o(0806, high)) 73.6 72.4

that our approach enhances LMMs’ long inference capabil- 409
ities in general multimodal reasoning tasks. 410

We further conducted a comparative evaluation against 411
Chain-of-Thought (CoT) and its variants, including CoT- 412
SC, SoT, and ToT, within the reasoning category of the 413
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SMU Classification: Restricted

Q: As shown in the figure, the two chords AB 
and CD in the circle intersect at E, ∠D = 35.0, 
∠AEC = 105.0, then ∠C = ()
CorrectFlow: 70°
GPT4o: 35°

MathVista

Q: Is the number of tiny gray bicycles that 
are on the left side of the brown metal 
sedan greater than the number of things 
that are to the left of the tiny green bicycle?
CorrectFlow: No Answer: Yes

Q: What is the size relationship between these two pairs of magnets?

CorrectFlow: The magnitude of the magnetic force is smaller in Pair 1.
GPT4o: The individual magnets in each pair are of the same size.

MMBench

Q: The image shows a python code. 
Is the output of the code '11'?

CorrectFlow: No 
Answer: Yes

Figure 5. Comparative visualization of our method’s performance on the MathVista and MMBench datasets.

Table 8. Performance Comparison on CCBench benchmark.

Method Sketch
Reasoning

InternVL2-Llama3-76B 91.1
InternVL2-8B 91.1
InternVL2-1B 86.7
BlueLM-V-3B 91.1

Step-1.5V 91.1
Qwen-VL-Max-0809 88.9

MMAlaya2 91.1
Qwen2-VL-72B 86.7

CongRong 91.1

GPT-4o (0806, high) 88.9
CorrectFlow (GPT-4o(0806, high)) 92.2

Table 9. Effects of Knowledge Extractor (KE) and Multi-level
Problem Solver (MPS) on the MME benchmark.

Method Code
Reasoning

Numerical
Calculation

Text
Translation

Commonsense
Reasoning

w/o-KE 185.0 200.0 188.5 176.4
w/o-MPS 185.0 192.5 185.0 180.7

Our 185.0 200.0 188.57 192.5

MMbenc benchmark. Table 4 provides a detailed perfor-414
mance comparison across various reasoning tasks, such as415
code reasoning, numerical calculation, text translation, and416
commonsense reasoning. This analysis demonstrates the417
advantages of CorrectFlow in handling complex reasoning418
tasks, which can be attributed to its real-time correction419
mechanism during agent collaboration.420

Multimodal Perception Tasks. Table 3 presents the ex-421
perimental results for perception tasks. From the table, we422
observe that CorrectFlow has minimal impact on perception423
task performance.424

4.5. Ablation Study425

We conducted a comprehensive ablation study on reason-426
ing tasks in MME-Bench using our GPT-4o-CorrectFlow427
model. The study highlights the effectiveness of our knowl-428
edge extractor (KE) and multi-level problem solver (MPS),429

as presented in Table 9. Without KE, the model’s per- 430
formance dropped significantly in the commonsense cate- 431
gory due to internal errors. Similarly, without MPS, relying 432
solely on methods like COT-SC, the performance in several 433
categories deteriorated, attributed to the lack of a thorough 434
consideration of the reasoning path. For more ablation re- 435
sults, please refer to the supplementary materials. 436

4.6. Visualization Analysis 437

Figure 5 presents sample outputs from our method. On the 438
left, we highlight successful cases of CorrectFlow, demon- 439
strating its effectiveness in accurately handling complex 440
reasoning tasks through agent collaboration. On the right, 441
we display failure cases, offering insights into the current 442
limitations and potential areas for improvement of our ap- 443
proach. For additional qualitative visualizations and a de- 444
tailed analysis, please refer to the supplementary materials. 445

5. Conclusion 446

Our CorrectFlow offers a robust solution for addressing 447
the intrinsic limitations of single MLLMs in multimodal 448
reasoning tasks. By introducing a two-agent framework 449
that separates knowledge extraction from reasoning valida- 450
tion, CorrectFlow significantly enhances accuracy and re- 451
liability. The implementation of core strategies such as the 452
self-suspect mechanism, active abandonment, and advanced 453
agent takeover enables dynamic intervention and escalation, 454
effectively reducing reasoning errors and overcoming veri- 455
fication biases. Our extensive evaluations on several public 456
benchmark datasets show that CorrectFlow outperforms ex- 457
isting methods, paving a road in the pursuit of dependable 458
multimodal reasoning systems. 459

Limitation. CorrectFlow has extra computational overhead 460
due to error correction, may impacting efficiency in rapid- 461
response system. Future work will optimize these costly 462
processes. 463
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