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MedConvMamba: Enhancing Medical Image
Classification by Integrating Convolutional
Neural Networks with Mamba for Local Feature
Extraction and Global Context Awareness
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Abstract— Medical image classification is a critical task
in computer vision, with Convolutional Neural Networks
(CNNs) and Transformers being widely used. However,
CNNs face challenges in capturing global context and long-
range dependencies, while Transformers encounter com-
putational difficulties due to their quadratic complexity.
Recently, State Space Models (SSMs), such as Mamba, have
made significant progress in efficiently modeling long-
range interactions with linear complexity. Inspired by these
advancements, we introduce MedConvMamba for medical
image classification. Our proposed SS-Conv-SSM module
combines the local feature extraction capabilities of con-
volutional layers with the long-range dependency mod-
eling of SSMs, enabling the model to better understand
the overall structure of images while accurately identifying
local lesions, making it particularly suitable for medical
image classification. We validated MedConvMamba through
experiments on two different modalities of medical image
datasets, and the results demonstrate that MedConviMamba
effectively detects lesions in various medical images. Ad-
ditionally, we explored the parameter configurations and
module settings of the CNN and SSM combined model
through a series of experiments. This study provides valu-
able insights for developing more efficient Al algorithms
and medical application systems based on CNN and SSM.

Index Terms— Medical Images, Image Classification,
Deep Learning, State Space Models, Convolutional Neural
Networks

[. INTRODUCTION

Modern medical research cannot do without the support of
medical images, which provide precise visual representations
of the structure and function of various tissues and organs in
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the human body, helping medical professionals and researchers
to explore in detail the normal and abnormal conditions in
patients, thus serving clinical and research purposes [1]. Nowa-
days, both cutting-edge research in laboratories and disease
diagnosis by clinical doctors heavily rely on the rich informa-
tion provided by medical image analysis to promote scientific
inference and diagnosis [2], [3]. With the development of
medical technology, various medical imaging methods have
emerged. In clinical settings, these technologies are widely
used. However, the accuracy of detection and diagnosis for
cancer and many other diseases depends on the professional
knowledge of individual clinical doctors, which leads to
significant differences in the interpretation and interpretation
of medical images. To address this clinical challenge, many
computer-aided detection and diagnosis (CAD) solutions have
been developed and tested, aimed at helping clinical doctors
more effectively read medical images and make diagnostic
decisions in a more accurate and objective manner [4].

Deep learning technology has shown significant potential
in the field of image processing, especially in the field of
computer-aided detection (CAD), where it has become a
mainstream technology [5]. This technology is widely used in
tasks such as medical image classification, segmentation, and
object detection, among which image classification is particu-
larly crucial as it directly relates to the patient’s diagnostic
process [6]. In medical image classification, models based
on Convolutional Neural Networks (CNN) and Transformers
exhibit excellent capabilities [7], [8]. These models not only
efficiently extract features from images, but are also commonly
used as backbones, encoders, or decoders in various model
architectures [9]. However, each of these technologies has its
limitations. Due to the limitations of local receptive domains,
CNN models are difficult to capture remote information in
images, which may lead to insufficient feature extraction.
Although Transformer based models perform well in global
information modeling, their self-attention mechanism relies on
computationally intensive operations. When processing large-
sized medical images, their computational burden significantly
increases, which limits their application in practical medical
image processing tasks. In addition, the secondary complexity
requirement of this model may make it difficult to implement
in resource constrained environments, especially in clinical
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scenarios that require fast and efficient processing of large
amounts of image data [7]-[10]. Therefore, although these
technologies have been applied in multiple healthcare fields,
they still need to be optimized for specific application scenar-
ios to improve performance.

Based on these facts and the relatively complex nature of
medical images compared to natural images, there is an urgent
need to develop a new medical image classification archi-
tecture that can effectively capture remote information while
maintaining linear computational complexity while achieving
local feature extraction. In recent years, State Space Modeling
(SSM) [11], [12] has aroused great interest among researchers.
On the basis of classical SSM research, Modern SSMs such
as Mamba not only establish long-range dependencies, but
also exhibit linear complexity related to input size [13]. In
addition, models based on SSM have been widely studied
in many fields, including language comprehension [12], [13],
general vision [14], [15], medical segmentation [16], [17],
etc. Especially some studies use SSM to complete various
image processing tasks, such as natural image classification
and medical image segmentation. However, the performance
of medical image classification models based on SSM still
needs to be explored.

Inspired by the success of SSM in natural image clas-
sification tasks, we propose MedConvMamba, a lightweight
model based on CNN and SSM, aimed at showcasing the
potential of combining CNN and Mamba in various medical
image classification tasks. Specifically, The core of MedCon-
vMamba consists of a module called SConvs-SSM. Unlike
natural images, various medical images have high similarity
in overall image structure and strong heterogeneity in local
lesions [18]. Therefore, the model needs to effectively extract
local fine-grained features and global features. Based on
this fundamental fact, SConvs-SSM combines the ability of
convolutional layers to understand local context and the remote
image context integration ability of SSM, while ensuring the
lightweight of the model, achieving effective extraction of
local and global features in medical images and accurate image
classification.

The main contributions of this article are as follows: 1)
We propose MedConvMamba and explore the potential ap-
plications of CNN combined with SSM models in different
modalities of medical images. 2) A comprehensive experiment
was conducted on two different modalities of datasets, and
the results showed that MedConvMamba has considerable
competitiveness while ensuring lightweight. 3) This study has
established a new baseline for medical image classification
tasks, providing valuable insights for the development of more
efficient and effective artificial intelligence algorithms and
medical application systems based on CNN combined with
SSM in the future.

Il. METHODS
A. Preliminaries

The SSM-based models, such as structured state space
sequence models (S4) and Mamba, are inspired by the continu-
ous system [13]-[19], which maps a 1-D function or sequence

z(t) € R — y(t) € R through a h(t) € RY hidden state.
This system uses A € RV*¥ as the evolution parameter and
B e RVX1 O € RN a5 the projection parameters.

h'(t) = Ah(t) + Bx(t),

y(t) = Chit). M

The S4 and Mamba are the discrete versions of the contin-
uous system, which include a timescale parameter A to trans-
form the continuous parameters A, B to discrete parameters

A, B. The commonly used method for transformation is zero-
order hold (ZOH), which is defined as follows:

A = exp(AA),

B = (AA) Yexp(AA) —1)- AB. @

After the discretization of A, B, the discretized version of
Eq. (1) using a step size A can be rewritten as:

ht = Aht,1 + th,

3
yr = Chy.

At last, the models compute output through a global con-
volution.

K =(CB,CAB,...,CAM7'B),

= 4
y=xzx K, X

where M is the length of the input sequence x, and K €
RM is a structured convolutional kernel.

B. MedConvMamba

Figure 1 shows the overall architecture of MedConvMamba.
The structure of MedConvMamba is quite simple, comprising
a patch embedding layer, SConvs-SSM Block, and an embed-
ding fusion module.

In MedConvMamba, the patch embedding layer first divides
the input image 2 € R”*"W >3 into non-overlapping patches
of size 8 x 8, mapping the image dimensions to C' (The default
value of C' is 192 for the Tiny version of the model and
384 for the Small version) , resulting in the embedded image
x € RUH/B)X(W/8)xC  Before feeding it into the backbone of
MedConvMamba, 2’ is normalized using layer normalization
[20]. The backbone consists of several SConvs-SSM Blocks.
The output dimension of each module is the same as z, that
is, y; € RUI/B)X(W/8)XC 4. i the output of the i-th SConvs-
SSM Block. The output of the last SConvs-SSM block will
be input into the embedding fusion module to obtain the final
prediction.

1) Mamba Architecture: Mamba is a simplified SSM archi-
tecture that differs from the stacking method of traditional
linear attention modules and multi-layer perceptron (MLP)
[21] modules. It integrates these two modules into a sin-
gle Mamba module. This module simplifies the structure
by replacing multiplication gating with activation functions
and integrating SSM transformation into the main path of
MLP. The overall design of Mamba includes multiple such
modules, equipped with standard normalization layers and
residual connections at intervals. This architecture not only
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Fig. 1. The overall architecture of the MedConvMamba.

maintains the linear extension ability of the state space model
to sequence length, but also has the modeling effect of a
transformer. Mamba combines the advantages of CNN and
transformers, providing an efficient foundational model for
the field of computational vision (CV). Unlike traditional
converters, Mamba avoids explicitly storing the entire context
through a selection mechanism, and the one-dimensional and
causal characteristics of this mechanism are its research focus
in CV applications.

2) SConvs-SSM block: The SConvs-SSM block is the core
module of MedConvMamba, as shown in Figure 2. This block
is designed to be a simple yet effective module, combining
a single convolutional layer with a Mamba structure. The
pseudo-code for the Mamba structure is presented in Algo-
rithm 1. The simplicity of the SConvs-SSM block not only
streamlines the architecture but also reduces the number of
parameters, making the model more lightweight and efficient.
Firstly, the input is processed through a convolutional layer
with a kernel size of 3, a step size of 1, and a C-channel. Then
input the output of this layer into the Mamba architecture. In
Mamba, we linearly project the normalized sequence to the
2 and z with dimension size F. Then, x is first subjected to
one-dimensional convolution. Subsequently, the embedding is
linearly projected onto B, C' and A. A is used to transform
A and B. The output result is calculated by SSM, selected
by z, and combined to produce an output that maintains the
same shape as the module input [22], [23]. This approach
not only optimizes the representation of features but also
enhances the model’s performance in handling classification
tasks. The SConvs-SSM block’s main advantage is its ability to
combine the robust local feature extraction of CNNs with the
Mamba structure’s expanded receptive field. This integration
enhances medical imaging by capturing fine-grained anomalies
and contextual information, improving classification accuracy.
As shown in Figure 3, the SConvs SSM block retains the

good local feature extraction ability of traditional CNN while
achieving a larger receptive field than Transformer, effectively
balancing local detail focus and a wider range of image
backgrounds.

Algorithm 1 Pseudo-code for Mamba in SConvs-SSM block
Input: z, the feature with shape [B, L, D] (batch size, token
length, dimension)

Params: A, the nn.Parameter; D, the nn.Parameter
Operator: Linear(.), the linear projection layer
Output: y, the feature with shape [B, L, D]

1: A,B,C = Linear(z),Linear(z),Linear(x)

2: A=exp(AA)

3: B=(AA)'(exp(AA) —I)-AB
4: h/t = Ah,t71 + B.’[?t

S: Yt = Cht
6:y=1[v1,92:--,Yt,--->YL]

7: return y

3) Embedding fusion module: The embedding fusion mod-
ule receives the output from the last SConvs-SSM block. Its
primary function is to integrate the same embedding features
across all patches and compute a unified value for each type
of embedding, thereby generating a 1 x C' feature vector. This
process is achieved through global average pooling, effectively
consolidating information from various features. This feature
vector is then fed into a fully connected layer, which is
responsible for the final classification prediction.

Ill. EXPERIMENTS AND RESULTS

In this section, we conducted experiments with MedCon-
vMamba, applying it to two types of medical image classifi-
cation tasks: X-ray images and dermatoscopic images (Figure
4).
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Fig. 2. Architecture of Mamba block. Mamba combines the base blocks of SSM with the MLP blocks prevalent in modern neural networks to form
a new Mamba block, which is stacked and combined with normalization and residual connection to form the Mamba network architecture.
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Fig. 3. Respective field comparison among CNN, Transformer, and our proposed MedConvMamba.

A. Embedding fusion module

COVID-19 Radiography Database The COVID-19 Radiog-
raphy Database [24] is a publicly available medical imaging
database, primarily jointly published by the University of
Qatar, Dalhousie University, and ARK Information Solutions
in India. This database focuses on collecting chest X-ray
images related to COVID-19 to help researchers and doctors
better understand and diagnose the COVID-19 virus through
image analysis. The latest version includes 3616 COVID-19
positive cases, as well as 10192 normal, 6012 pulmonary opac-
ities (non COVID pulmonary infections), and 1345 images of
viral pneumonia.

The ISIC2019 [25] dataset comprises 25,331 dermoscopic
images, collected from various international sources, including
the Medical University of Vienna (MUV), Austria, and several
clinics in Queensland, Australia. These images have been
gathered over the past three decades. In the earlier years,
before digital cameras were common, lesion images were
captured on film, stored, and archived at MUV’s Department

of Dermatology. These analog photographs were later digitized
using a high-resolution scanner, converted into 8-bit color
JPEG format at a resolution of 300 DPI, and subsequently re-
sized to a resolution of 72 DPI with dimensions of 1024 x 768
pixels. The dataset is categorized into eight different classes,
namely vascular lesions (VASC), actinic keratosis (AKIEC),
melanoma (MEL), benign keratosis (BKL), melanocytic nevus
(NV), basal cell carcinoma (BCC), dermatofibroma (DF), and
squamous cell carcinoma (SCC), containing 193, 435, 1323,
1242, 12100, 678, 239, and 221 images respectively.

B. Evaluation Metrics

This study used five key indicators — accuracy (ACC),
precision, recall, specificity, and F1 score - to evaluate the
classification performance of the model. These indicators are
widely recognized and used in medical image classification
research by calculating the true examples (TP), true nega-
tive examples (TN), false negative examples (FN), and false
positive examples (FP) in the confusion matrix. The above
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Fig. 4. Respective field comparison among CNN, Transformer, and our proposed MedConvMamba.

evaluation indicators are calculated as follows:

TP +TN

ACURY = PN + PP+ PN ®)
Precision = TPIJF—PFP (6)
Sensitivity = TP}—ﬂi-—PFN (7N
Specificity = % (®)

2 x Precision x Sensitivity
F'l-score = — rvrar )
Precision + Sensitivity

C. Implementation Details

Before initiating the network training, all images were
resized to dimensions of 224x224x3. Each image underwent
normalization and standardization processes. We used the
AdamW optimizer [26] for adjusting model parameters, setting
an initial learning rate of 5e-4, with a weight decay of le-5,
and employed Cross-Entropy Loss. The model was trained
using the PyTorch [27] framework over 300 epochs with a
batch size of 64. To prevent overfitting, an early-stop strategy
was implemented. No data augmentation techniques or pre-
trained weights were used, ensuring that the performance met-
rics of the model could directly reflect the unique architecture
of MedConvMamba. The training setup included an Ubuntu
18.04 operating system and an NVIDIA RTX A6000 GPU.

D. Results

1) Comparing Classification Performance with Other Models:
In previous work, researchers have tended to use classifi-
cation models meticulously designed for ImageNet [28] to
classify medical images. Although these models were initially
applied to natural image classification, experimental results
have shown that they are also effective in medical image
classification [29], [30]. Therefore, to demonstrate the poten-
tial of MedConvMamba, we compared it with state-of-the-art
Mamba-based medical image classification models, as well as
with some of the most advanced models applied to medical
image classification tasks. The experimental results are shown
in Tables I and II.

The results indicate that, despite the simplicity of the
MedConvMamba architecture, it performs excellently in med-
ical image classification tasks. MedConvMamba-S surpasses
mainstream Mamba-based models, as well as CNN and
Transformer-based models, in terms of ACC on the two
selected datasets. Notably, its sensitivity and F1 scores also
exceed those of other models. In medical image classification
tasks, sensitivity and F1 scores are crucial metrics. This is
because, in multi-class disease diagnosis models, there is
usually a greater emphasis on capturing diseased samples.
Misdiagnosis in medical diagnostics (i.e., falsely classifying
diseased samples as healthy) can lead to serious consequences,
thus models need to minimize such errors. The superior
performance of MedConvMamba in these two metrics further
demonstrates its potential in medical image classification tasks.

2) The Impact of the Number of Blocks on Model Perfor-
mance: In the SConvs SSM block, we utilized a simplified
Mamba architecture as the SSM component in the module.
Vim increases model depth by using 24 Vim blocks similar to
the Mamba architecture. Although VMamba uses VSS blocks
with more parameters, it uses fewer blocks.
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TABLE |
COMPARISON OF CLASSIFICATION PERFORMANCE OF DIFFERENT MODELS ON COVID-19 RADIOGRAPH DATABASE

Image size Param GFLOPs Acc Precision Sensitivity Specificity F1 Score

CNN

ResNet18 [31] 224 11IM 1.8 81.11 8245 75.35 92.23 78.23
ResNet34 [31] 224 22.7M 3.7 81.25 82.59 76.67 92.33 78.98
RegNetY-4G [32] 224 19.6M 4.0 93.36 93.91 93.85 97.30 93.86
ConvNext [33] 224 28.6M 4.5 89.75 92.52 87.90 95.58 89.98
Vit

Vit-T [34] 224 49M 1.3 87.30 87.10 86.99 94.76 86.97
Swin-T [35] 224 28.3M 4.5 9226 92.37 92.26 94.57 92.23
DeiT-Ti [36] 224 57M 13 88.81 90.75 87.10 95.35 88.76
Efficientvit MO [37] 224 23M  0.08 92.42 94.02 90.53 96.53 92.14
Efficientvit M4 [37] 224 88M 0.3 93.55 94.83 92.04 96.89 93.33
SSM

VMamba-T [14] 224 30.7M 4.9 94.15 94.10 94.03 97.47 94.02
MedMamba [38] 224 13.3M 2.0 93.77 93.88 93.77 97.56 93.80
Vim-T [15] 224 7.IM 1.5 91.90 93.66 90.66 96.57 92.07
Vim-S [15] 224 26.0M 5.1 92.96 94.47 92.34 96.99 93.35
MedConvMamba-T 224 4.1M 1.8 93.60 93.62 93.60 95.98 93.60
MedConvMamba-S 224 16.1IM 7.3 94.45 94.47 94.45 96.35 94.45

TABLE Il

COMPARISON OF CLASSIFICATION PERFORMANCE OF DIFFERENT MODELS ON ISIC2019 DATABASE

Image size Param GFLOPs Acc

Precision Sensitivity Specificity F1 Score

CNN

ResNet18 224 1M 1.8 65.02 37.25 30.97 93.09 31.49
ResNet34 224 22.7M 3.7 63.87 30.45 29.69 92.99 29.78
RegNetY-4G 224 19.6M 4.0 70.47 56.95 53.42 94.77 54.68
ConvNext 224 28.6M 4.5 68.95 62.49 46.62 93.88 49.84
Vit

Vit-T 224 49M 1.3 67.28 57.89 60.52 92.59 57.84
Swin-T 224 28.3M 4.5 77.75 76.96 71.75 89.57 76.91
DeiT-Ti 224 57M 1.3 71.83 65.45 49.09 94.69 52.63
Efficientvit_ MO 224 23M  0.08 66.86 49.07 29.67 92.78 30.47
Efficientvit M4 224 88M 0.3 69.21 47.93 34.94 93.43 37.30
SSM

VMamba-T 224 30.7M 4.9 75.92 74.32 75.50 95.42 74.31
MedMamba 224 13.3M 2.0 75.20 74.70 75.18 95.52 74.37
Vim-T 224 7.IM 1.5 72.20 68.34 53.04 94.73 57.35
Vim-S 224 26.0M 5.1 76.65 72.84 62.39 95.66 66.55
MedConvMamba-T 224 4.1M 1.8 76.39 75.26 76.39 88.44 75.36
MedConvMamba-S 224 16.1IM 7.3 79.69 79.33 79.69 90.13 79.03

To determine the optimal depth setting for MedCon- TABLE Il

vMamba, we conducted experiments with varying depths
based on MedConvMamba-T using the COVID-19 Radiograph
Dataset. As shown in Table III, maintaining other parameters
constant, appropriately reducing the depth not only decreased
the number of model parameters but also improved perfor-
mance. However, excessively shallow depths significantly re-
duced accuracy. Therefore, based on the experimental results,
the depth of the model in MedConvMamba was set to 7.

3) The Impact of Patch Size Settings on Model Performance:

In previous studies, Vim followed the ViT architecture and set
the patch size to 16. However, in medical imaging, lesions can

PERFORMANCE OF MEDCONVMAMBA-T AT DIFFERENT DEPTHS ON
COVID-19 RADIOGRAPH DATASET

Depth Image size Param GFLOPs Acc
3 224 1.8M 0.8 92.8
7 224 41M 138 93.6
14 224 82M 37 86.5

be quite small, necessitating the model’s ability to detect fine-
grained details. Therefore, a smaller patch size is required to
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capture more detailed features. Additionally, a smaller patch
size increases the input sequence length. The Mamba architec-
ture’s advantage with long sequence inputs makes it more suit-
able for medical image classification compared to Transform-
ers. As shown in Table IV, reducing the patch size improved
the predictive performance of MedConvMamba-T on COVID-
19 Radiograph dataset. Consequently, in MedConvMamba-T,
the patch size was set to 8.

TABLE IV
PERFORMANCE OF MEDCONVMAMBA-T ON RADIOGRAPH DATASETS
OF COVID-19 UNDER DIFFERENT PATCH SIZE SETTINGS

Param ACC Acc

Patch size Image size

8 224 41M 936 928
14 224 42M 926 93.6
16 224 42M  92.0 86.5

4) Comparison of Different Embedding Fusion Methods:
For embedding fusion, we experimented with four different
methods and the results are shown in Table V. Initially, we
employed the simplest approach by flattening all features
into a one-dimensional vector and then passing it through
a fully connected layer to generate the feature vector. This
method achieved excellent classification performance with
a relatively small number of parameters. Next, we used a
standard convolutional kernel with a size of 3x3 and a stride
of 1 to convolve the feature maps, followed by global average
pooling to generate the feature vector. This approach signif-
icantly increased the number of parameters and resulted in
a slight decrease in performance. Subsequently, we replaced
the standard convolution with depth-wise convolution [39],
which yielded the best performance while maintaining a lower
parameter count compared to the previous methods. Finally,
when we removed the depth-wise convolution layer and only
used global average pooling to generate the feature vector, the
parameter count was further reduced without degrading the
model’s performance. Therefore, in MedConvMamba, we em-
ploy global average pooling as the embedding fusion module
to extract the feature vector.

TABLE V
PERFORMANCE OF MEDCONVMAMBA-T ON RADIOGRAPH DATASETS
OF COVID-19 UNDER DIFFERENT PATCH SIZE SETTINGS

Image size Param GFLOPs Acc

Flatten 224 47M 19 93.5
Convolution 224 33M 1.9 93.2
Depth-wise convolution 224 43M 1.8 93.6

Global average pooling 224 41M 1.8 93.6

[V. CONCLUSION

In this study, to effectively model medical images with
fine-grained features, we combined CNNs, which are adept
at extracting local features, with SSMs, which can handle
long sequence inputs with fewer parameters to capture global
features. This led to the development of MedConvMamba,
a model tailored for medical image classification tasks. To

demonstrate that the potential of MedConvMamba in medical
classification tasks directly benefits from SSM, we did not
employ any pretraining strategies or data augmentation tech-
niques. We conducted experiments on MedConvMamba using
two different types of medical datasets and performed several
experiments to optimize the parameter settings for the appli-
cation of SSM in the medical imaging domain. The results
show that MedConvMamba exhibits excellent performance
in medical image classification tasks. Moreover, compared
to various widely used architectures in medical classification
tasks, MedConvMamba is highly competitive.

For future work, we outline the following points: 1) We
will further explore the potential of LightMed Mamba on
medical datasets obtained from other imaging technologies and
optimize it, with a focus on lightweight design and suitability
for smaller datasets. 2) We plan to introduce causal inference
[40] concepts and methods to enhance the interpretability of
MedConvMamba, making it more competitive in the medical
field. Additionally, developing visualization methods suitable
for SSM is necessary for the same purpose. 3) Given the ad-
vantages of SSM in long-sequence modeling, it is worthwhile
to investigate the application prospects of MedConvMamba
in high-resolution medical images, such as pathology images
[41]. 4) Using MedConvMamba as a backbone, we will
explore its potential applications in other medical imaging
tasks, such as image segmentation, object detection, image
registration, and image reconstruction.
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