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A B S T R A C T   

Using digital pathology slide scanning technology, artificial intelligence algorithms, particularly deep learning, 
have achieved significant results in the field of computational pathology. Compared to other medical images, 
pathology images are more difficult to annotate, and thus, there is an extreme lack of available datasets for 
conducting supervised learning to train robust deep learning models. In this paper, we introduce a self-supervised 
learning (SSL) model, the Global Contrast-masked Autoencoder (GCMAE), designed to train encoders to capture 
both local and global features of pathological images and significantly enhance the performance of transfer 
learning across datasets. Our study demonstrates the capability of the GCMAE to learn transferable represen
tations through extensive experiments on three distinct disease-specific hematoxylin and eosin (H&E)-stained 
pathology datasets: Camelyon16, NCT-CRC, and BreakHis. Moreover, we propose an effective automated pa
thology diagnosis process based on the GCMAE for clinical applications. The source code of this paper is publicly 
available at https://github.com/StarUniversus/gcmae.   

1. Introduction 

Pathology is considered the gold standard of diagnosis. Traditionally, 
pathology relies heavily on macroscopic observation through micro
scopes. Pathologists assess the nature of lesions and classify tissues based 
on their subjective experience, making the diagnostic outcomes sus
ceptible to variability due to factors such as the observer’s experience 
and fatigue [1-3]. Computational pathology, by converting glass slides 
into digital images and applying image processing technologies, facili
tates a shift from qualitative analysis to quantitative evaluation in 
pathological diagnosis. In recent years, empowered by whole-slide 
image (WSI) scanning technology [4], artificial intelligence algo
rithms, especially those involving deep learning, have made significant 
strides in the field of computational pathology [1,5,6]. This has not only 
marked a current research trend but also outlined a pivotal direction for 
the future development of pathological methodologies. 

Deep learning (DL) is one of the common methods used to extract 
computational pathology features, as it can directly learn subvisual 
image features that are difficult for humans to find with their eyes [7]. 
However, most DL methods require a large amount of high-quality 
labeled data, making them difficult to transfer to other datasets with 
different feature spaces or probability distribution functions [8]. 
Different staining methods, scanning equipment variations, different 
diseases and intraclass differences across organs and tissues lead to data 
feature differences and long-tailed problems, especially in the field of 
computational pathology [7]. Maximizing the use of source domain 
datasets for representation learning has become an important method 
for alleviating the poor model performance caused by data scarcity in 
the target domain [8]. 

Recent advances in self-supervised visual representation learning 
have led to significant progress in the field of natural images [9-11]. 
Self-supervised learning (SSL) employs pretext tasks to extract valuable 
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representation information from a large volume of unsupervised data. In 
the last few years, contrastive learning-based SSL methods such as 
SimCLR [10] and MoCo [9] have been transferred to computational 
pathology for use in downstream tasks. This transfer has significantly 
narrowed the performance gap between unsupervised and supervised 
learning methods [12]. Furthermore, specific data augmentation stra
tegies and complex pretext tasks have been developed to better capture 
the unique representation spaces of pathological images. For example, 
Yang et al. [13] developed a cross-stain prediction and a new data 
augmentation technique, stain vector perturbation, tailored to the 
characteristics of pathological images, and proposed the CS-CO method 
using contrastive learning, which was proven effective on the NCTCRC 
datasets. Similarly, Li et al. [14] created the SSLP method, which ex
plores pathological features from three perspectives—self-invariance, 
intra-invariance, and inter-invariance—by designing complex pretext 
tasks; this method exceeded the performance of supervised methods on 
the Camelyon16 dataset. However, the abovementioned self-supervised 
method based on contrastive learning has the problems of high hard
ware resource consumption, high training difficulty in multitask 
learning scenarios, and lower cross-dataset transfer learning perfor
mance than supervised learning [11,15]. Therefore, simplifying pretext 
tasks and improving the overall representational capability of models 
are essential challenges in pathological representation learning. 

In 2021, as an extensible SSL method, a masked autoencoder (MAE) 
achieved state-of-the-art (SOTA) results on the ImageNet dataset [11]. 
This method randomly masks part of the input image and employs a 
lightweight decoder to rebuild the obscured pixels, which can not only 
yield improved accuracy but also speed up the training process. Addi
tionally, it demonstrates better learning efficiency than contrastive 
learning [11]. Pathological diagnosis often requires the consideration of 
both the global and local features of WSIs [1]. Due to the morphological 
similarity between cells and tissues of the same type, MAEs may have the 
potential to discover correlations within pathological image tiles, that is, 
to extract local features. Correspondingly, if we use the memory bank 
structure [16] of contrast learning to store the features between each 
pair of tiles, MAEs may also be capable of capturing global features. 

Based on the above analysis, we propose a global contrast-masked 
autoencoder (GCMAE)-based SSL model that can extract both global 
and local features from pathological images. On the one hand, based on 
the MAE network structure, the model can obtain the internal hidden 
space feature representation of each patch in pathological images. On 
the other hand, the model integrates the memory bank structure to store 
the global features of pathological images, and contrastive learning is 
used to mine the feature associations between tiles. Second, we also 
design an automatic pathological image diagnosis process based on the 
GCMAE for clinical application, which can make full use of unlabeled 
pathological data to further improve the performance of the model. 
Finally, we also attempt to utilize a lightweight modeling method to 
increase the confidence of GCMAE in clinical application. The main 
contributions of this study are as follows.  

1. We have proposed GCMAE, which integrates two self-supervised 
pretext tasks, masking image reconstruction and contrast learning, 
to produce effective supervision. These tasks also train the encoder to 
represent local-global features of pathological images.  

2. We analyzed the mask ratio suitable for pathological images, and 
provided guidance for pathology-specific training methods related to 
the masked image modeling (MIM) paradigm.  

3. We selected three pathological image benchmark data sets, and 
proved that GCMAE has a tangible improvement over other state-of- 
the-art self-supervised and transfer learning methods through 
extensive experiments.  

4. In this paper, an automatic diagnosis process and a lightweight 
modeling method for pathological images based on the GCMAE are 
designed for clinical application purposes. 

2. Related works 

Pathological image analysis constitutes a critical branch within the 
field of medical image processing, playing an indispensable role in dis
ease diagnosis, treatment strategy formulation, and prognostic evalua
tion. In recent years, the rapid development of deep learning 
technologies has introduced new methodologies for automatic disease 
feature extraction, lesion detection, and classification from pathological 
images, leading to significant advancements in the field of pathological 
image analysis [17,18]. These advanced deep learning methods are 
capable of autonomously identifying patterns and features of clinical 
significance within complex pathological images, such as whole slide 
image classification [19] and prognostic indicator evaluation [20], and 
can further enhance the decision-making performance of models by 
constructing graph representations of spatial correlations between tissue 
components [21]. However, the heterogeneity of data resulting from 
multi-center sources presents a major challenge in pathological image 
analysis, compelling researchers to explore strategies like federated 
learning [22] and representation learning [23] to improve model 
generalization capabilities, with preliminary successes achieved in these 
fields. 

In addressing the challenge of data heterogeneity, self-supervised 
learning has demonstrated tremendous potential. This paradigm, by 
leveraging the input data itself as a supervisory signal, has been proven 
beneficial across a variety of downstream tasks in the realm of repre
sentation learning [24]. Consequently, through self-supervised learning, 
a vast array of unlabeled pathological image samples can be utilized to 
learn a universal data representation, thereby assisting downstream 
tasks with limited labeled samples. Currently, contrastive learning and 
masked image modeling, as the predominant methods of self-supervised 
learning, have both shown effectiveness in the representation task of 
pathological images, despite each having its limitations [25]. 

Contrastive learning, a self-supervised learning paradigm exten
sively utilized in the domain of pathological image representation, has 
been validated as effective by multiple studies [26]. Despite some suc
cess achieved by directly applying self-supervised algorithms designed 
for natural image representation to the field of medical image analysis 
[12,27], the lack of targeted design has limited performance improve
ments. Effective data augmentation methods are key to realizing the 
superior representational capabilities of contrastive learning [28]. 
Accordingly, researchers have devised data augmentation strategies 
tailored to the characteristics of pathological images, such as elastic 
deformation [29] and stain vector perturbation [13]. Additionally, 
specially designed pretext tasks have been shown to enhance the per
formance of contrastive learning in pathological image representation 
tasks [14]. Methods like SDSCL [30] employ uniquely crafted 
self-distillation strategies to improve the feature representation encoded 
by contrastive learning. SSLP [14] and RSP [31], respectively, explore 
from the perspectives of intrinsic characteristics of pathological images 
and the multi-resolution contextual information inherent in their pyra
midal nature, achieving commendable results. However, contrastive 
learning still faces shortcomings in the realm of pathological image 
representation, primarily due to the homogeneity in the visual appear
ance of pathological images which constrains its representational ca
pabilities, and the common practice of random cropping as a data 
augmentation method, which only inputs the main part of the sample 
into the encoder, thus limiting the universality of the learned 
representations. 

On the other hand, MAE and their derivatives within the masked 
image modeling (MIM) paradigm offer innovative solutions to the lim
itations faced by contrastive learning. To date, methods within the MIM 
paradigm have been applied to representation learning tasks for natural 
images and videos [32,33], but only a handful of studies have ventured 
into the medical imaging domain [34]. Among these, a notable approach 
for pathological images is the SDMAE [35], which, in addition to pre
serving the original task of image reconstruction, incorporates a 
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self-distillation module for the visible parts of the image to enhance the 
learning of high-level semantic information. However, the focus of MAE 
models on learning representations within individual samples, without 
fully exploiting the relationships between samples, has limited their 
applicability in pathological image representation tasks. Therefore, a 
self-supervised model that integrates the strengths of both 
self-supervised learning paradigms, tailored to the unique characteris
tics of pathological image representation tasks, will offer a new avenue 
to enhance model generalization capabilities and address data hetero
geneity issues. 

3. Methodology 

In this section, we describe the GCMAE algorithm in detail. Fig. 1 
shows the framework diagram of our proposed GCMAE-based SSL al
gorithm. In summary, the GCMAE consists of four parts, a preprocessor, 
an encoder, a tile feature extractor and a global feature extractor, as well 
as two pretext tasks: image reconstruction and contrast learning. The 
GCMAE inherits and optimizes these methods for pathological images. 
As shown in Eq. (1), the weighted sum of the mean squared error (MSE) 
loss of tile feature extraction and the noise contrastive estimation (NCE) 
loss of global feature extraction is used as the cost function to reduce the 
distance between similar features while learning high-level image fea
tures, thus improving the generalization of the model and the accuracy 
achieved in the cross-dataset transfer learning task. 

L = λ1LMSE + λ2LNCE (1)  

3.1. Preprocessing 

The large amount of redundant information contained in WSIs, such 
as non-tissue background regions, can reduce the training performance 
of the model. Therefore, it is necessary to perform preprocessing oper
ations on WSIs. First, the optimal segmentation threshold of the given 
WSIs is calculated based on the Otsu threshold segmentation algorithm, 
and the tissue regions are extracted. Finally, the mean and standard 
deviation of the tiles are calculated to achieve the normalization 

operation, and a normalized image with a mean of 0 and a standard 
deviation of 1 is output to accelerate the convergence of the model. 

3.2. Encoder 

The vision transformer (ViT) [36] is regarded as the encoder back
bone fen. Compared with the classic convolutional neural network 
(CNN), the ViT model without an inductive bias has a very high capacity 
and a good generalization ability; it can also learn more abundant 
pathological representations and transfer them to downstream tasks. 
Because the ViT is a large model, we need to consider an efficient pre
training method to train the visual representation ability of the ViT. An 
MAE randomly masks some details of the input image with a high mask 
ratio (MR%) and reconstructs missing pixels only from the visible part of 
the feature space, enabling it to achieve excellent performance in nat
ural image representation tasks. This study attempts to extend a simple 
and efficient MAE to pathological image representation tasks. Specif
ically, first, 224 × 224 tiles It i l e ∈ RH×W×C are divided into regular 
nonoverlapping patches (16 × 16) I ∈ RN×(p2×C); a 2D patch sequence is 
output, where H × W is the size of the original image, C is the number of 
channels in the image, p2 is the resolution of each patch, and N = HW

p2 is 
the number of patches cut from the original image. This setting has two 
main purposes. 1. It is convenient for randomly masking some images. 2. 
When a 2D image sequence is processed into a 1D image sequence, the 
sequence length can be reduced. Then, the patches are randomly 
sampled by a uniform distribution to mask some patches, and the visible 
parts form a new subset of patches Ipat ch (vi s) ∈ RV×(p2×C). V = N × (1-MR 
%) is the number of visible partial patches and the length of the sequence 
of valid inputs for the transformer block. 

The image features of the visible parts are embedded by linear pro
jection, and the position information is encoded by positional embed
dings. Specifically, the 2D image of the visible part Ipat ch (vi s) ∈ RV×(p2×C)

is flattened and mapped to the Dth dimension through a trainable linear 
projection, and the output vector is a patch embedding. Then, standard 
learnable 1D vectors are added to the patch embedding to preserve the 
position information. The embedded features and position information 

Fig. 1. Framework of the GCMAE. Tile feature extraction is the pretext task of image reconstruction, while global feature extraction is the pretext task of contrastive 
learning. The latent representation is the t-distributed stochastic neighbor embedding (t-SNE) result of the encoder output. 
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are fed into the transformer block to extract a latent representation of 
the visible parts of the tile. 

3.3. Tile feature extraction 

As a decoder fde, the tile feature extraction module consists of eight 
transformer blocks, which form an asymmetric structure with an 
encoder possessing at least 12 transformer blocks (ViT-base). The 
asymmetric encoder-decoder structure shows that the encoder and 
decoder are decoupled, which is beneficial for the encoder to learn more 
generalized representations. In this study, the decoder mainly assists the 
encoder in learning general representations. However, while training 
the encoder, the reconstruction ability of the decoder is also optimized. 
If a symmetrical structure design is adopted and the encoder and 
decoder are coupled, even if the encoder’s representation ability is 
insufficient, a powerful decoder can minimize the loss by optimizing the 
reconstruction ability, thus limiting the feature expression of the 
encoder. The key to self-supervision lies in pretraining the encoder to 
attain a strong representation ability and transferring it to downstream 
tasks. Therefore, it is necessary to adopt an asymmetric encoder-decoder 
structure, which has also been proven in the field of natural images [11]. 
At the same time, the lightweight decoder design reduces the memory 
consumption and further expands the application range of the algorithm 
in clinical environments. The experimental MAE results verify that a 
decoder with 8 transformer blocks can effectively assist the encoder in 
learning general representations, and this study follows this setting. 

In addition to the latent representation V pat ch (vi s), the input also 
includes a shared, learned vector mask token V mask − t ok en , which is used 
to indicate the missing patches. The mask token also contains the posi
tion embeddings of all patches, which are used to reconstruct the 
missing pixels. The normalized tiles are used as the target to calculate 
the MSE loss, as shown in Eq. (4). 

V = fen
(
Ipatch(vis)

)
+ Vmask− token (2)  

Iʹtile = fde(V) (3)  

LMSE =
1
n
∑n

i=1

(
Itile − Iʹtile

)2 (4) 

The random tile sampling strategy can remove redundant informa
tion and realize the difficult pretext process of directly reconstructing 
the original missing pixels from their adjacent patches. However, the 
strategy can only represent the internal features of each tile and cannot 
represent the feature relationships between different tiles. 

3.4. Global feature extraction 

Global feature extraction is implemented through contrastive 
learning [16]. The latent representation Vpatch(vis) is not only inputted to 
the decoder for image reconstruction but also updated to a memory bank 
B with a momentum coefficient of t for storing global features. The 
memory bank is a fixed-length, dynamically updated queue for storing 
feature embeddings of data samples. In the contrastive learning task, 
some features can be randomly selected from the memory bank and 
embedded as negative samples, which can alleviate the limitation of 
batch size on contrastive learning performance. We design the mo
mentum update feature differently from the momentum update model 
parameters in MoCo, using only a separate encoder and a memory bank 
to enable contrastive learning. Specifically, it is known that the latent 
representation at the output of the encoder in the current epoch is 
Vpatch(vis), and the latent representation deposited in B from the previous 
epoch is Vʹ

patch(vis)B. The latent representation Vpatch(vis)B deposited in B 
during the current epoch is 

Vpatch(vis)B =
0.5Vpatch(vis) + 0.5Vʹ

patch(vis)B

‖ 0.5Vpatch(vis) + 0.5Vʹ
patch(vis)B||

2 (5) 

The main reason for this design of Vpatch(vis)B is twofold: 1. It can 

Fig. 2. Automatic pathological diagnosis process based on the GCMAE.  
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alleviate the differences among the features of the same sample in 
different epochs caused by the use of different model parameters and 
random masks during the training process of the network. 2. Combining 
features from adjacent epochs enables the construction of pathological 
feature representations with higher information density, thus improving 
the generic feature representation capability of the GCMAE. 

We construct Vpatch(vis)B as a dictionary to be stored as a data sample 
queue in B. The Vpatch(vis)B corresponding to the input minibatch of the 
current epoch is extracted from B as the key value k+. The current 
minibatch of Vpatch(vis) (as query q) forms a positive pair with k. The 
potential features of the n samples drawn randomly from the memory 
bank form a negative pair with q. Cosine similarity is used as a means of 
evaluating the distances between features to calculate the similarity 
between the Vpatch(vis) values. We consider an efficient form of the 
contrast learning loss function, called infoNCE, to minimize the dis
tances between positive pairs and maximize the distances between 
negative pairs; the loss function is defined as follows. 

Lq,k+ ,B = − log
exp(qTk+/τ)

exp(qTk+/τ) +
∑

k− ∈Bexp(qTk− /τ) (6)  

τ is a temperature parameter that controls the concentration level of the 
distribution [37]. Because the memory bank dynamically stores a large 
number of data sample features, the constant comparison and discrim
ination between q and the memory bank features can help the encoder to 
effectively mine rich semantic information between tiles and then help 
the encoder learn global features. 

3.5. Workflow of the proposed GCMAE 

Based on the GCMAE, we propose a reasonable pathological diag
nosis process for images with hematoxylin and eosin (HE) staining. The 
overall flow chart is shown in Fig. 2, which is mainly divided into three 
parts: pretraining data collection, the GCMAE and downstream tasks. 
The pretraining data part mainly prepares a large number of unlabeled 
pathological image datasets, which are easier to obtain than labeled 
data. At the same time, the pretraining dataset and the target dataset can 
be different datasets, which further expands the data sources and re
duces the difficulty of data collection. The GCMAE is the key to the 
whole process, and the encoder is pretrained in a self-supervised way to 
perform representation learning for pathological images. The good 
cross-dataset representation ability of the GCMAE-based self-supervised 
algorithm improves the classification performance and expansion ability 
attained in downstream tasks. The downstream task is mainly to fine- 
tune the pretrained encoder to adapt to the target task by using the 
target domain dataset. According to different downstream task objec
tives, the pretraining encoder can be fine-tuned in three ways: 1. taking 
the pretraining parameters as the initialization parameters of the 
downstream task model, the best performance can be achieved in the 
target task by training the model from scratch; 2. the feature extraction 
part is frozen, only the linear probing method of the classifier is fine- 
tuned, and the model size and training time are greatly reduced; 3. 
the model storage weight is reduced from 32 bits to 16 bits by quanti
zation, and the model size is reduced as much as possible while ensuring 
maximal performance. 

4. Experimental results and analysis 

4.1. Dataset and data settings 

In this paper, three pathological datasets, Camelyon16 [38], 
NCTCRC [39] and BreakHis [40], were collected to fully evaluate the 
general visual pathological image representation ability of the 
GCMAE-based self-supervised algorithm. The Camelyon16 data set 
contains two types of breast cancer WSIs. We randomly cut 270k 
non-overlapping images with the size of 224 × 224 at 40 magnification. 

The NCTCRC data set consisted of nine categories of 100k pathological 
image patches with a size of 224 × 224, which were scanned at a spatial 
resolution of 0.5 μm/pixel. BreakHis data set contains 7909 breast tumor 
pathological images with a size of 700 × 460 in eight categories. This 
study mainly uses 400 magnification images in this data set, with a total 
of 1820 images. Among them, the Camelyon16 and NCTCRC datasets 
were used for the pretraining and downstream tasks of SSL, and 
BreakHis was only used as an extended experimental dataset for the 
downstream tasks. The data setting are shown in Table 1, and the spe
cific data details are shown in the supplementary file part A. 

In this study, all pathological images used for model development 
were resized to 224 × 224 pixels via bilinear interpolation and 
normalized using the calculated means and standard deviations. We 
refrained from employing conventional data augmentation and stain 
normalization techniques in the preprocessing of pathological images, 
with the intent to evaluate the representation learning capabilities and 
robustness of the SSL algorithms under more stringent training condi
tions. Additionally, the specific impact of stain normalization on model 
performance was assessed independently. 

4.2. Hyperparameter settings and evaluation criteria 

The hyperparameters of the GCMAE method were set as follows: τ =
0.07, t = 0.5, k− = 8192, batch_size=128, epochs = 80, and the other 
hyperparameters were consistent with those of the MAE. With regard to 
the loss function, we confirmed that λ 1 = 1 and λ 2= 0.1 through pre- 
experiments to ensure that the losses of MSE and NCE were on the 
same order of magnitude and that the performance of the GCMAE could 
be optimized. In order to avoid over-fitting of ViT on relatively small 
datasets, a reasonable epoch=80 was determined by pre-experiment. 
The details of the experiment are shown in the supplementary mate
rial part B. The optimizer was AdamW with betas= (0.9, 0.95). We set up 
two classic models as the backbones: ResNet 50 [41] and ViT-base 
(ViT-B/16). ResNet 50 is a classic CNN and the backbone of contras
tive learning paradigm. ViT-B/16 is a high-capacity model with a 
stronger generalization ability. It is beneficial to build a general repre
sentation model in the pathological field when the available patholog
ical data are sufficient, and this model is also the backbone network of 
the MAE and GCMAE. See part C in the supplementary file for details 
regarding the hyperparameter settings utilized for the downstream tasks 
and comparison methods. All self-supervised pretraining experiments 
did not involve any labels, and all experiments were conducted on an 
RTX A6000 GPU. 

Linear probing and end-to-end fine-tuning are common evaluation 
methods for self-supervised models. Specifically, linear probing freezes 
the backbone parameters and trains classifiers in a supervised way. This 
task focuses on the feature extraction ability of the tested pretraining 
model and is widely used to evaluate the representation performance of 
self-supervised models. The end-to-end fine-tuning task involves 
training a model from scratch on the target task, and the pretraining 
model is equivalent to the parameter initialization method of the model 
fine-tuning task. This task is a classic downstream task for a self- 
supervised model. In practical self-supervised applications, end-to-end 
fine-tuning can better optimize the target task. This study mainly re
ports accuracy and Area Under Curve (AUC) to evaluate the model 

Table 1 
Data settings for conducting pretraining, training and testing on the three 
pathological datasets.  

Dataset Pretrain Downstream task Overall 

Train Test 

Camelyon16 220,000 40,000 10,000 270,000 
NCTCRC 100,000* 100,000* 7180 107,180 
BreakHis N/A 1274 546 1820 

Note: annotation * is the same data. 
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performance. The mean and standard deviation are obtained by running 
Monte Carlo cross-validation ten times. 

4.3. Mask ratio 

For SSL with the MIM paradigm, images with different information 
densities are suitable for different mask ratios. Therefore, this study 
discusses the suitable mask ratio for pathological image representation. 
Table 2 shows the influence of the mask ratio on the pathological rep
resentation of MIM-based SSL, represented by the MAE. In the patho
logical representation application, a 50 % mask ratio is suitable for 
linear probing, and an 80 % mask ratio is suitable for fine-tuning, which 
contrasts with the optimal mask ratio of 75 % in natural image appli
cations. Pathological images contain abundant tissue features, and their 
information density is higher than that of natural images. Therefore, 
when using the MAE model to reconstruct pathological images, more 
information needs to be known. However, the optimal result of model 
fine-tuning is achieved at a higher mask ratio of 80 %, which shows that 
the suitable mask ratio for linear probing in the pathological image field 
is not suitable for model fine-tuning, further proving the result in [11]. 
Consistent with the natural image results, the influences of pretraining 
models with different mask ratios on model fine-tuning are lower than 
that of linear probing, and the accuracy of model fine-tuning is better 
than that of the ViT-B/16 trained from scratch (81.9 %). 

4.4. Cross-dataset and cross-disease transfer task 

The scarcity of abundant high-quality labeled data is one of the key 
factors limiting the performance of deep learning methods. A common 
strategy employed is the use of readily available source domain data to 
pre-train models, enhancing performance on target domain data 
through feature transfer. Hence, cross-dataset transfer tasks serve as an 
effective benchmark for assessing the practical performance of SSL 
algorithms. 

This experiment was designed as a challenging cross-dataset and 
cross-disease transfer task. Specifically, the source and target domain 
datasets were entirely distinct, with no overlap (i.e., cross-dataset 
transfer), and involved different diseases (i.e., cross-disease transfer). 
Within this context, we evaluated four categories of methods. As a 
baseline for transfer learning, we utilized the ResNet50 and ViT-B/16 
models, employing parameters from random initialization, ImageNet 
pre-training, and pathology-specific pre-training derived from super
vised classification tasks for both linear probing and fine-tuning tasks. 
Additionally, we compared three classical methods from the contrastive 
learning paradigm: SimCLR [10], MoCo v1 [9], and MoCo v2. The third 
category comprised two SSL algorithms specifically designed for pa
thology images: TransPath [42] and CS-CO [13]. Lastly, we included the 
representative method MAE from the MIM paradigm. The backbone for 
the contrastive learning and pathology-specific SSL algorithms was 
ResNet 50, while for MAE and GCMAE, it was ViT-B/16. 

4.4.1. Transferring from Camelyon16 to NCTCRC 
In this study, we utilized the Camelyon16 dataset for model pre- 

training before transferring to the NCTCRC to perform a nine-class 
classification task, with detailed results presented in Table 3. The 
experimental outcomes demonstrate that GCMAE achieved the highest 

Table 2 
Influences of different mask ratios on pathological representation with SSL and 
the MIM paradigm (mean±std%).  

Mask ratio Linear probing Fine-tunning 

Accuracy AUC Accuracy AUC 

10 % 80.87±0.64 89.92±0.84 83.41±0.45 92.53±0.61 
20 % 81.79±0.91 90.14±0.86 83.11±0.79 92.07±0.63 
30 % 82.11±0.88 90.75±0.74 83.01±0.44 91.96±0.31 
40 % 82.41±0.76 90.78±0.69 83.24±0.38 92.39±0.64 
50 % 85.21±0.58 93.18±0.47 82.43±0.22 92.02±0.33 
60 % 81.88±0.69 90.02±0.74 83.22±0.59 92.18±0.46 
70 % 82.25±0.79 90.85±0.81 83.02±0.37 92.33±0.29 
75 % 81.79±0.84 89.82±0.76 84.01±0.53 92.82±0.49 
80 % 80.52±0.76 88.07±0.59 84.97±0.31 93.52±0.29 
90 % 80.94±0.73 87.14±0.53 83.79±0.49 92.44±0.36  

Table 3 
Performance comparison among different SSL models when transferring from 
Camelyon16 to the NCTCRC task (mean±std%).  

Methods Linear probing Fine-tuning 

Accuracy AUC Accuracy AUC 

Randomly initailized 
ResNet 50 

50.12 
±1.52 

63.45 
±1.56 

86.75 
±1.34 

94.56 
±1.23 

ImageNet pre-trained 
ResNet50 

62.32 
±0.85 

75.23 
±0.98 

88.12 
±0.89* 

98.39 
±0.85 

Camelyon16 pre-trained 
ResNet50 

78.69 
±0.79 

88.65 
±0.95 

89.12 
±0.96 

98.42 
±0.85 

Randomly initailized 
ViT-B/16 

43.59 
±2.32 

68.89 
±2.14 

76.58 
±2.15 

84.56 
±2.06 

ImageNet pre-trained 
ViT-B/16 

52.68 
±1.39 

88.95 
±1.62 

81.46 
±0.92* 

97.35 
±0.87 

Camelyon16 pre-trained 
ViT-B/16 

73.46 
±0.85 

82.23 
±0.75 

82.01 
±0.78 

96.85 
±0.84 

SimCLR 80.95 
±0.87 

97.73 
±0.79 

90.67 
±0.52 

98.99 
±0.68 

MoCo v1 78.40 
±0.95 

92.52 
±0.98 

89.54 
±0.45 

98.57 
±0.42 

MoCo v2 81.75 
±0.74 

93.26 
±0.92 

91.29 
±0.85 

99.02 
±0.72 

TransPath 82.41 
±0.79 

94.62 
±0.65 

91.89 
±0.46 

99.05 
±0.41 

CS-CO 85.58 
±0.54 

98.33 
±0.41 

92.01 
±0.33 

98.58 
±0.31 

MAE 85.25 
±0.43 

98.28 
±0.74 

93.43 
±0.47 

99.12 
±0.41 

GCMAE 89.22 
±0.32 

98.74 
±0.15 

93.89 
±0.25 

99.46 
±0.19 

Note: The result of marking * is also the baseline result of fully-supervised 
learning. 

Table 4 
Performance comparison among different SSL methods when transferring from 
NCTCRC to Camelyon16 (mean±std%).  

Methods Linear probing Fine-tuning 

Accuracy AUC Accuracy AUC 

Randomly initailized 
ResNet 50 

68.72 
±2.32 

79.42 
±2.15 

80.41 
±1.75 

87.62 
±1.31 

ImageNet pre-trained 
ResNet50 

72.96 
±0.79 

83.41 
±0.76 

82.15 
±0.49* 

89.68 
±0.62 

NCTCRC pre-trained 
ResNet50 

77.28 
±0.91 

85.51 
±0.76 

81.12 
±0.45 

89.53 
±0.79 

Randomly initailized 
ViT-B/16 

63.51 
±2.42 

69.75 
±2.74 

78.47 
±2.21 

86.22 
±2.04 

ImageNet pre-trained 
ViT-B/16 

69.41 
±1.25 

78.27 
±1.43 

81.13 
±0.49* 

88.06 
±0.52 

NCTCRC pre-trained 
ViT-B/16 

75.26 
±0.85 

84.02 
±0.49 

80.25 
±0.35 

87.91 
±0.51 

SimCLR 79.29 
±0.83 

89.89 
±0.78 

80.25 
±0.85 

90.69 
±0.89 

MoCo v1 77.82 
±0.56 

85.43 
±0.64 

80.93 
±0.45 

88.75 
±0.37 

MoCo v2 80.21 
±0.45 

89.73 
±0.75 

81.76 
±0.43 

90.87 
±0.35 

TransPath 79.85 
±0.47 

88.75 
±0.67 

82.23 
±0.51 

91.45 
±0.81 

CS-CO 79.74 
±0.28 

88.43 
±0.32 

82.47 
±0.21 

91.77 
±0.29 

MAE 80.72 
±0.37 

89.04 
±0.2 

83.32 
±0.15 

92.85 
±0.18 

GCMAE 81.56 
±0.23 

90.52 
±0.32 

83.92 
±0.24 

92.69 
±0.16 

Note: The result of marking * is also the baseline result of fully-supervised 
learning. 
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accuracy and AUC values in both linear probing and fine-tuning tasks. 
Specifically, in the linear probing task, GCMAE’s performance was 
significantly superior to the comparative methods. To illustrate, 
compared to Camelyon16 pre-trained ResNet50, MoCo v2, CS-CO, and 
MAE, GCMAE’s accuracy improved by 10.53 %, 7.47 %, 3.64 %, and 
3.97 %, respectively. The ViT-B/16 model pre-trained with GCMAE 
achieved an accuracy of 89.22 % through mere fine-tuning of the clas
sifier (linear probing), which is a 7.76 % increase over the supervised 
training baseline of ViT-B/16 (accuracy of 81.46 %). This indicates that 
GCMAE can effectively train models to learn pathology representations 
with significant generalizability. Additionally, the strategy of merely 
fine-tuning the classifier is advantageous due to its high training effi
ciency and low computational resource consumption, enabling the 
model to rapidly adapt to various downstream tasks, thus confirming the 
excellent scalability of GCMAE. Despite maintaining the best perfor
mance in fine-tuning tasks, GCMAE did not show a marked improvement 
in performance compared to other SSL algorithms, largely because fine- 
tuning performance is greatly influenced by the training strategy on the 
target data, which diminishes the distinctive performance of SSL 
algorithms. 

4.4.2. Transferring from NCTCRC to camelyon16 
In this experiment, the NCTCRC dataset was used to pre-train models 

which were then transferred to the Camelyon16 dataset to assess per
formance through a binary classification task; the specific results are 
presented in Table 4. In the linear probing task, GCMAE achieved an 
accuracy improvement of 4.28 %, 1.35 %, 1.71 %, and 0.84 % compared 
to Camelyon16 pre-trained ResNet50, MoCo v2, CS-CO, and MAE, 
respectively. In the fine-tuning task, while GCMAE’s AUC was slightly 
lower than that of MAE by a margin of 0.16 %, GCMAE’s accuracy 
consistently outperformed the other methods. 

4.4.3. Performance analysis in cross-dataset and cross-disease transfer 
tasks 

Upon further analysis of the results presented in Tables 3 and 4, 
several insights emerge. Initially, ResNet50 outperformed ViT-B/16 in 
the baseline tests for transfer learning, potentially due to the limited 
scale of the dataset used in our experiment, which may have restricted 
the full potential of ViT-B/16. ViTs have a stronger representation 
capability due to their reduced inductive bias, yet are more dependent 
on larger quantities of data [15]. Fortuitously, with only 200,000 pa
thology images for pre-training via GCMAE, the ViT models were able to 
surpass the performance of ResNet on smaller-scale pathology image 
datasets, demonstrating the broad applicability and cost-effectiveness of 
GCMAE for pathology image representation. 

Moreover, as a prototypical algorithm within the MIM paradigm, 
MAE surpassed the contrastive learning approaches in pathology image 
representation tasks. MAE excels by randomly masking image patches 
and reconstructing the missing parts, encouraging the model to capture 
a global representation of the image. In contrast, random cropping, a 
common data augmentation method used in contrastive learning, can 
only input the main part of the cropped picture into the network training 
process, and no other means are taken to urge the encoder to learn the 
representation for the missing part. As a result, contrastive learning 
usually pays more attention to the features of the subject part, which 
inevitably reduces the universality and generalization of the represen
tational transfer process to downstream tasks. 

Lastly, other SSL methods specifically designed for pathology image 
representation, such as CS-CO, TransPath, and SSLP, also exhibit certain 
limitations. CS-CO’s model training is divided into two stages: a 
generative task for cross-stain prediction and a contrastive learning task 
for fine-tuning the encoder, whereas GCMAE utilizes a more streamlined 
and efficient approach with two pretext tasks conducted simultaneously. 
TransPath implements contrastive learning via data augmentation 
without considering inter-patch relationships. GCMAE, on the other 
hand, not only delves deep into the features of each image patch but also 

explores the rich semantics between them through contrastive learning. 
SSLP designs three pretext tasks utilizing the spatial adjacency of 
patches in WSIs, but its effectiveness may be diminished for datasets 
containing only patch-level pathology images due to the loss of spatial 
information. As SSLP is not open-sourced, we did not directly include it 
in our comparison. Furthermore, GCMAE, benefiting from the design of 
the masked image generation task, also outperforms the aforementioned 
methods in terms of hardware consumption. 

4.5. Robustness test 

Robustness tests are designed to evaluate a model’s resistance to 
anomalous inputs, such as sudden changes in dataset size and various 
noise attacks. Specifically, we randomly selected 10 %, 50 %, and 80 % 
of the data from the training set used in Section 4.4′s downstream tasks 
to investigate the impact of dataset size on model performance. 
Regarding noise attacks, we introduced five different types of noise into 
the dataset to verify the model’s noise immunity. In this experiment, we 
solely assessed the performance of GCMAE using linear probing as the 
downstream task. 

4.5.1. Influence of the dataset size on the representation ability of the 
GCMAE 

This experiment primarily investigates the performance of models 
pre-trained with GCMAE across different dataset sizes. The experiment 
utilized the full training dataset (i.e., 100 %) and its randomly extracted 
subsets of 80 %, 50 %, and 10 %, while the test set remained unchanged, 
all within the context of cross-dataset and cross-disease transfer tasks. 
For details of the data, see Table 5. As shown in Table 6, when the 
dataset size was reduced from 100 % to 10 %, for both tasks, the ac
curacy of ViT-B/16 models without GCMAE pre-training decreased by 
31.54 % and 26.54 % respectively, whereas the accuracy of the GCMAE 
pre-trained ViT-B/16 models only decreased by 2.49 % and 1.65 %, 
improving stability by 12.7 and 16 times respectively. Furthermore, the 
impact of different dataset sizes on the model’s classification perfor
mance is visualized in Fig. 3, which shows that the performance of the 
ViT-B/16 models pre-trained with GCMAE is more stable, with almost 
no noticeable decline, whereas the accuracy of ViT-B/16 models without 
GCMAE pre-training drops more significantly in complex tasks (as 
shown in Fig. 3(a)). This further validates the effectiveness of GCMAE in 
reducing the model’s dependence on large amounts of high-quality 

Table 5 
Data settings for different dataset sizes.  

Dataset Train Test 

100 % 80 % 50 % 10 % 

Camelyon16 40,000 32,000 20,000 4000 10,000 
NCTCRC 100,000 80,000 50,000 10,000 7180  

Table 6 
Experimental results obtained by the model on tasks with different dataset sizes 
(mean±std%).  

Task Method Dataset size 

10 % 50 % 80 % 100 % 

Transferring from 
Camelyon16 to 
NCTCRC 

ImageNet pre- 
trained ViT- 
B/16 

49.92 
±1.41 

54.83 
±0.98 

76.53 
±0.93 

81.46 
±0.92 

GCMAE 86.73 
±0.45 

88.52 
±0.39 

89.13 
±0.31 

89.22 
±0.32 

Transferring from 
NCTCRC to 
Camelyon16 

ImageNet pre- 
trained ViT- 
B/16 

54.59 
±0.89 

78.93 
±0.59 

80.58 
±0.41 

81.13 
±0.49 

GCMAE 79.91 
±0.43 

80.94 
±0.28 

81.39 
±0.17 

81.56 
±0.23  
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labeled data and in handling complex tasks, which is of significant 
importance for expanding the application scope of deep learning in the 
field of medical image analysis. 

4.5.2. Influence of noise attacks on the representation ability of the GCMAE 
This experiment primarily examines the impact of noise attacks on 

GCMAE’s performance. We introduced Gaussian noise, salt-and-pepper 
noise, uniform noise, exponential noise, and Rayleigh noise into the 
test dataset to interfere with the model’s predictions. The initial epsilon 
value for noise intensity was set at 0.001, incrementing in powers of 2, 

ranging from 0.001 to 0.256. We evaluated the impact of noise on 
GCMAE’s performance using four metrics: accuracy, precision, recall, 
and F1 score. The results are displayed in Fig. 4. GCMAE exhibited the 
strongest robustness against uniform noise. The model’s performance 
began to significantly decline when the epsilon value exceeded 0.064. 
For epsilon values below 0.016, GCMAE showed good robustness against 
all types of noise except for salt-and-pepper noise; when the epsilon 
value was below 0.004, it maintained good resistance to all noise types. 
Additionally, we observed that as the epsilon value approached 0.256, 
GCMAE tended to predict high-noise tumor images as normal, thereby 

Fig. 3. Effects of different dataset sizes on model performance. (A) is the experimental result obtained by pretraining on Camelyon16 and transferring to NCTCRC for 
downstream tasks, and (b) is the experimental result obtained by pretraining on NCTCRC and transferring to Camelyon16 for downstream tasks. 

Fig. 4. Effects of five noises on GCMAE performance.  
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reducing the number of false positives and leading to an increase in 
precision. Finally, Fig. 5 demonstrates the effect of adding noise to pa
thology images, with a visual comparison revealing that the uniform 
noise images most closely resemble the original images, explaining why 

GCMAE exhibits the best robustness against uniform noise. In summary, 
GCMAE demonstrated positive effects in resisting noise interference, 
proving its excellent robustness. 

4.6. Extended experiment 

4.6.1. Extended experiment on BreakHis 
In this experiment, we further assessed the performance of GCMAE in 

pathology image representation using the BreakHis dataset. On the 
Camelyon16 dataset, we pre-trained the ViT-B/16 model using super
vised learning, MAE, and GCMAE, and set the ViT-B/16 model pre- 
trained on ImageNet with supervised learning as the performance 
baseline. The specific experimental results are shown in Table 7. In the 
linear probing task, GCMAE achieved the best accuracy at 53.74 %, but 
it did not have a significant advantage over MAE and methods based on 
supervised pre-training. For the fine-tuning task, GCMAE significantly 
outperformed other methods, reaching an accuracy of 92.14 % and an 
AUC of 99.23 %. In this task, the accuracy of models pre-trained with 
self-supervision was significantly higher than those pre-trained with 

Fig. 5. Effects of adding five kinds of noise to pathological images.  

Table 7 
Pathological image classification results obtained on the BreakHis dataset (mean 
±std%).  

Method Linear probing Fine-tuning 

Accuracy AUC Accuracy AUC 

ImageNet pre-trained 
ViT-B/16 

51.24 
±0.74 

72.21 
±0.59 

52±0.65 74.18 
±0.87 

Camelyon16 pre-trained 
ViT-B/16 

52.42 
±0.41 

75.84 
±0.58 

51.85 
±0.37 

73.22 
±0.37 

MAE 53.14 
±0.34 

83.92 
±0.41 

89.52 
±0.27 

98.51 
±0.32 

GCMAE 53.74 
±0.26 

83.79 
±0.29 

92.14 
±0.17 

99.23 
±0.16  

Table 8 
Influence of Stain Normalization on Transfer Learning Performance (mean±std%).  

Method Linear probing Fine-tuning 

w/o stain normalization w/ stain normalization w/o stain normalization w/ stain normalization 

Camelyon16 pre-trained ResNet50 78.69±0.79 79.58±0.86 89.12±0.96 89.33±0.41 
Camelyon16 pre-trained ViT-B/16 73.46±0.85 74.91±0.74 82.01±0.78 83.92±0.57 
MoCo v2 81.75±0.74 82.41±0.62 91.29±0.85 90.74±0.45 
CS-CO 85.58±0.54 87.56±0.85 92.01±0.33 93.74±0.51 
MAE 85.25±0.43 87.91±0.47 93.43±0.47 93.91±0.47 
GCMAE 89.22±0.32 90.58±0.49 93.89±0.25 94.21±0.27  
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supervision, especially GCMAE, which saw an accuracy increase of 
40.14 % compared to the ViT-B/16 pre-trained on ImageNet with su
pervised learning. These results clearly demonstrate that GCMAE out
performs other comparative algorithms on the BreakHis dataset in both 
linear probing and fine-tuning tasks, further validating GCMAE’s uni
versal representational capability and superior robustness. 

4.6.2. Influence of stain normalization on transfer learning performance 
In transfer learning tasks involving pathology images, stain 

normalization plays a crucial role in reducing data heterogeneity. To this 
end, we compared the performance of various methods on linear prob
ing and fine-tuning tasks, both with and without stain normalization. We 
selected the best-performing methods from transfer learning, contrastive 
learning, pathology-specific approaches, and the MIM paradigm from 
Table 3 for comparison against GCMAE. The experimental results in 
Table 8 indicate that the accuracy of all methods improved on both 
linear probing and fine-tuning tasks after applying stain normalization. 
Notably, GCMAE achieved the highest accuracy following stain 
normalization, with rates of 90.58 % and 94.21 %, respectively. 
Particularly in the linear probing task, the performance increase of MAE 
was the most significant, with an accuracy improvement of 2.66 %, 
reaching 87.91 %, although this still fell short of GCMAE’s 89.22 % 
accuracy without stain normalization. These findings suggest that stain 
normalization has a positive impact on enhancing model performance in 
pathology image tasks, especially evident in the linear probing task. 

4.6.3. Whole slide image classification experiment 
WSI classification is a crucial task in clinical diagnosis. Within this 

task, the Multi-Instance Learning (MIL) algorithm is extensively applied, 
where the quality of training for feature extractors directly impacts its 
classification performance. To further validate the effectiveness of 
GCMAE, we conducted experimental research on WSI classification 
within the MIL framework. Specifically, we utilized a classic MIL algo
rithm, TransMIL, and performed validation experiments on the Camel
yon16 dataset. The experimental results (see Table 9) demonstrated that 
the ViT-B/16 model pre-trained with GCMAE achieved the highest ac
curacy rate of 91.86 % in the WSI classification task, marking an accu
racy improvement of 5.81 % compared to the ViT-B/16 baseline model 
pre-trained with supervised learning on the ImageNet dataset. It is worth 
emphasizing that models based on self-supervised pre-training out
performed those pre-trained with supervision, mainly due to the self- 
supervised learning’s ability to effectively avoid the decrease in 
feature generalization performance caused by overfitting labels, thereby 
possessing better feature generalization capability. These results prove 
the efficacy of GCMAE in enhancing WSI classification performance, 
offering robust technical support for the future development of clinical 
diagnostic tools. 

5. Conclusion and future work 

In this study, we introduce the GCMAE self-supervised learning 
framework specifically designed for pathology image representation, 
aimed at encoding a universal representation of pathology images. By 
integrating contrastive learning with masked image reconstruction 
tasks, GCMAE effectively pre-trains models to learn general pathology 

image representations, significantly enhancing model performance in 
cross-dataset and cross-disease transfer learning tasks. This approach 
promises to mitigate the challenges of modeling rare diseases caused by 
the long-tail problem in medical imaging through cross-dataset pre- 
training. Moreover, we explored the optimal mask ratio suitable for 
pathology image representation, providing a reference for future self- 
supervised algorithms in the MIM paradigm within the pathology 
image domain. Based on GCMAE, we also proposed a rational automatic 
diagnostic process for HE-stained pathology images, exploring its po
tential feasibility in clinical applications. However, this work has its 
limitations. Currently, GCMAE has been pre-trained only on a limited 
pathology image dataset from a single organ, and due to data scale 
constraints, only the vit-base model has been pre-trained, limiting its 
ability to construct a broadly applicable representation model. Future 
work will encompass integrating large-scale pathology image datasets 
from multiple organs and centers, and utilizing GCMAE to pre-train 
larger models such as ViT-Large/-Huge, aiming to build a truly univer
sal large-scale pathology image representation model. At the same time, 
we will also consider improving the masking strategy to extend the 
applicability of GCMAE to the Pyramid-based ViTs model. 
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